Electrolyte Transport Evolution Dynamics in Lithium-Sulfur Batteries

被引:22
|
作者
Mistry, Aashutosh N. [1 ]
Mukherjee, Partha P. [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2018年 / 122卷 / 32期
关键词
PRECIPITATION; SURFACE; POLYSULFIDES; CAPACITY; KINETICS; SHUTTLE;
D O I
10.1021/acs.jpcc.8b05442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The liquid electrolyte is a critical component in the lithium-sulfur battery, which dissolves long-chain intermediate polysulfides, forms electrochemically active interface, and allows species and charge transport. The electrolyte transport dynamics is, however, intricately affected by the underlying evolution of chemical speciation. In this work, a comprehensive description is presented to identify the role of speciation and intra- and interspecies interactions on electrolyte-transport dynamics. The evolutionary presence of different polysulfide species alters the transport characteristics which in turn affects electrochemical complexations. Microstructural changes and electrolyte evolution are concurrently present, and their mutual coupling is discussed. The role of the sulfur to electrolyte ratio, which dictates speciation in the electrolyte phase, and ionic transport limitations are elucidated.
引用
下载
收藏
页码:18329 / 18335
页数:7
相关论文
共 50 条
  • [21] Electrolyte Issues in Lithium-Sulfur Batteries: Development, Prospect, and Challenges
    Liu, Gang
    Sun, Qujiang
    Li, Qian
    Zhang, Junli
    Ming, Jun
    ENERGY & FUELS, 2021, 35 (13) : 10405 - 10427
  • [22] Low Concentration Electrolyte Enabling Cryogenic Lithium-Sulfur Batteries
    Chu, Fulu
    Wang, Meng
    Liu, Jiamin
    Guan, Zengqiang
    Yu, Huanyu
    Liu, Bin
    Wu, Feixiang
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (44)
  • [23] Improving performance of lithium-sulfur batteries with sulfolane as electrolyte additive
    Pan, Yi-Zhen
    Hong, Xiao-Bin
    Kai, Xie
    Chen, Yi-Min
    ADVANCED MATERIALS AND ENERGY SUSTAINABILITY, 2017, : 90 - 96
  • [24] Molecular modeling of electrolyte and polysulfide ions for lithium-sulfur batteries
    Babar, Shumaila
    Lekakou, Constantina
    IONICS, 2021, 27 (02) : 635 - 642
  • [25] Practical Lithium-Sulfur Batteries: Beyond the Conventional Electrolyte Concentration
    Song, Xiaosheng
    Liang, Xinghui
    Kim, Hun
    Sun, Yang-Kook
    ACS Energy Letters, 2024, 9 (11) : 5576 - 5586
  • [26] Developing highly solvating electrolyte solutions for lithium-sulfur batteries
    He, Mengxue
    Ozoemena, Kenneth Ikechukwu
    Aurbach, Doron
    Pang, Quanquan
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 39
  • [27] Solidifying Cathode-Electrolyte Interface for Lithium-Sulfur Batteries
    Wang, Wen-Peng
    Zhang, Juan
    Chou, Jia
    Yin, Ya-Xia
    You, Ya
    Xin, Sen
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2021, 11 (02)
  • [28] Effect of Electrolyte Composition on Performance and Stability of Lithium-Sulfur Batteries
    Ishino, Yuki
    Takahashi, Keitaro
    Murata, Wataru
    Umebayashi, Yasuhiro
    Tsuzuki, Seiji
    Watanabe, Masayoshi
    Kamaya, Minori
    Seki, Shiro
    ENERGY TECHNOLOGY, 2019, 7 (12)
  • [29] Electrolyte solvation chemistry for lithium-sulfur batteries with electrolyte-lean conditions
    Kong, Long
    Yin, Lihong
    Xu, Fei
    Bian, Juncao
    Yuan, Huimin
    Lu, Zhouguang
    Zhao, Yusheng
    JOURNAL OF ENERGY CHEMISTRY, 2021, 55 : 80 - 91
  • [30] Shuttle inhibitor effect of lithium perchlorate as an electrolyte salt for lithium-sulfur batteries
    Kim, Hyung Sun
    Jeong, Chang-Sik
    Kim, Yong-Tae
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2012, 42 (02) : 75 - 79