On Quasi Bi-Slant Submersions from Kenmotsu Manifolds onto any Riemannian Manifolds

被引:3
|
作者
Prasad, R. [1 ]
Akyol, M. A. [2 ]
Singh, P. K. [1 ]
Kumar, S. [3 ]
机构
[1] Univ Lucknow, Dept Math & Astron, Math, Lucknow, India
[2] Bingol Univ, Fac Arts & Sci, Dept Math, Math, TR-12000 Bingol, Turkey
[3] Shri Jai Narain Post Grad Coll, Math, Lucknow, Uttar Pradesh, India
关键词
Kenmotsu manifold; slant submersion; bi-slant submersion; quasi bi-slant submersion; vertical distribution;
D O I
10.30495/JME.2022.1588
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the notion of quasi bi-slant submersions from almost contact metric manifolds onto Riemannian manifolds. These submersions are generalization of hemi-slant submersions and semi-slant submersions. We study such submersions from Kenmotsu manifolds onto Riemannian manifolds and discuss some examples of it. In this paper, we also study the geometry of leaves of distributions which are involved in the definition of the submersion. Further, we obtain the conditions for such submersions to be integrable and totally geodesic.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] ON CONFORMAL QUASI HEMI-SLANT SUBMERSIONS FROM LORENTZIAN PARA SASAKIAN MANIFOLDS ONTP RIEMANNIAN MANIFOLDS
    Kumar, Sushil
    Prasad, Rajendra
    Singh, Punit K.
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (05): : 919 - 935
  • [22] Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds
    Ahmad, Muqeem
    Ahmad, Mobin
    Mofarreh, Fatemah
    [J]. AIMS MATHEMATICS, 2023, 8 (08): : 19526 - 19545
  • [23] QUASI BI-SLANT SUBMANIFOLDS OF PARA-KAEHLER MANIFOLDS
    Chaube, B.
    Chanyal, S. K.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2024, 93 (02): : 115 - 127
  • [24] Anti-Invariant Riemannian Submersions from Cosymplectic Manifolds onto Riemannian Manifolds
    Murathan, Cengizhan
    Erken, Irem Kupeli
    [J]. FILOMAT, 2015, 29 (07) : 1429 - 1444
  • [25] Warped Product Quasi Bi-Slant Submanifolds of Kaehler Manifolds
    Lone, M. A.
    Majeed, P.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (02) : 718 - 727
  • [26] upsilon-pointwise bi-slant Lorentzian submersions from LP-Sasakian manifolds
    Pal, Tanumoy
    Shukla, Shiv Sharma
    Hui, Shyamal Kumar
    [J]. AFRIKA MATEMATIKA, 2021, 32 (7-8) : 1341 - 1354
  • [27] Pointwise slant submersions from almost product Riemannian manifolds
    Sepet, Sezin Aykurt
    Ergut, Mahmut
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (03) : 639 - 655
  • [28] Hemi-slant Riemannian submersions from cosymplectic manifolds
    Kumar, Sushil
    Prasad, Rajendra
    Verma, Sandeep Kumar
    [J]. ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2022, 15 (04): : 11 - 27
  • [29] Conformal semi-slant submersions from Lorentzian para Kenmotsu manifolds
    Prasad, Rajendra
    Singh, Punit Kumar
    Kumar, Sushil
    [J]. TBILISI MATHEMATICAL JOURNAL, 2021, 14 (01) : 191 - 209
  • [30] Chen-Ricci inequalities for quasi bi-slant Riemannian submersions from complex space forms
    Chen, Bang-Yen
    Lone, Mehraj Ahmad
    Wani, Towseef Ali
    [J]. JOURNAL OF GEOMETRY, 2024, 115 (02)