A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel

被引:46
|
作者
Boudaoui, Ahmed [1 ]
Moussa, Yacine El Hadj [2 ]
Hammouch, Zakia [3 ,4 ,5 ]
Ullah, Saif [6 ]
机构
[1] Univ Adrar, Lab Math Modeling & Applicat, Natl Rd 06, Adrar 01000, Algeria
[2] Univ Djillali Liabes Sidi Bel Abbes, Dept Probabil & Stat, LP 89, Sidi Bel Abbes 22000, Algeria
[3] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[4] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Moulay Ismail Univ Meknes, Dept Sci, Ecole Normale Super, Meknes, Morocco
[6] Univ Peshawar Khyber Pakhtunkhwa, Dept Math, Peshawar, Pakistan
关键词
Epidemic model; COVID-19; pandemic; Caputo?Fabrizio fractional derivative; Existence and uniqueness; Isolation; Quarantine; Numerical simulation;
D O I
10.1016/j.chaos.2021.110859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate an epidemic model of the novel coronavirus disease or COVID-19 using the Caputo?Fabrizio derivative. We discuss the existence and uniqueness of solution for the model under consideration, by using the the Picard?Lindel?f theorem. Further, using an efficient numerical approach we present an iterative scheme for the solutions of proposed fractional model. Finally, many numerical simulations are presented for various values of the fractional order to demonstrate the impact of some effective and commonly used interventions to mitigate this novel infection. From the simulation results we conclude that the fractional order epidemic model provides more insights about the disease dynamics. ? 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Analysis of a Fractional-Order COVID-19 Epidemic Model with Lockdown
    Denu, Dawit
    Kermausuor, Seth
    [J]. VACCINES, 2022, 10 (11)
  • [32] Caputo fractional-order SEIRP model for COVID-19 Pandemic
    Akindeinde, Saheed O.
    Okyere, Eric
    Adewumi, Adebayo O.
    Lebelo, Ramoshweu S.
    Fabelurin, Olanrewaju O.
    Moore, Stephen E.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 829 - 845
  • [33] Complex dynamics of a fractional-order SIR system in the context of COVID-19
    Majee, Suvankar
    Adak, Sayani
    Jana, Soovoojeet
    Mandal, Manotosh
    Kar, T. K.
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) : 4051 - 4074
  • [34] Complex dynamics of a fractional-order SIR system in the context of COVID-19
    Suvankar Majee
    Sayani Adak
    Soovoojeet Jana
    Manotosh Mandal
    T. K. Kar
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 : 4051 - 4074
  • [35] ON THE FRACTIONAL-ORDER MODELING OF COVID-19 DYNAMICS IN A POPULATION WITH LIMITED RESOURCES
    Akanni, J. O.
    Fatmawati
    Chukwu, C. W.
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [36] Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19
    Singh, Harendra
    Srivastava, H. M.
    Hammouch, Zakia
    Nisar, Kottakkaran Sooppy
    [J]. RESULTS IN PHYSICS, 2021, 20
  • [37] STABILITY ANALYSIS OF A FRACTIONAL ORDER CORONAVIRUS(COVID-19) EPIDEMIC MODEL
    Khuddush, M.
    Prasad, K. R.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (04): : 1446 - 1460
  • [38] A Fractional Order Covid-19 Epidemic Model with Mittag–Leffler Kernel
    Khan H.
    Ibrahim M.
    Khan A.
    Tunç O.
    Abdeljawad T.
    [J]. Journal of Mathematical Sciences, 2023, 272 (2) : 284 - 306
  • [39] A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel
    Okposo, Newton I.
    Adewole, Matthew O.
    Okposo, Emamuzo N.
    Ojarikre, Herietta I.
    Abdullah, Farah A.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 152
  • [40] A novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels
    Zhang, Zizhen
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 139