The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction

被引:0
|
作者
Fang, Yi [1 ]
Sun, Mengtian [2 ]
Dai, Guoxian [1 ]
Ramani, Karthik [2 ]
机构
[1] NYU, Elect Engn, Abu Dhabi, U Arab Emirates
[2] Purdue Univ, Mech Engn, W Lafayette, IN 47907 USA
来源
关键词
Diffusion Geometry; PPI Network; protein function prediction; INTERACTION MAP; YEAST;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent developments in the high-throughput technologies for measuring protein-protein interaction (PPI) have profoundly advanced our ability to systematically infer protein function and regulation. To predict PPI in a net-work, we develop an intrinsic geometry structure (IGS) for the network, which exploits the intrinsic and hidden relationship among proteins in the network through a heat diffusion process. We apply our approach to publicly available PPI network data for the evaluation of the performance of PPI prediction. Experimental results indicate that, under different levels of the missing and spurious PPIs, IGS is able to robustly exploit the intrinsic and hidden relationship for PPI prediction with a higher sensitivity and specificity compared to that of recently proposed methods.
引用
收藏
页码:487 / 493
页数:7
相关论文
共 50 条
  • [41] LSE: A Novel Robust Geometric Approach for Modeling Protein-Protein Interaction Networks
    Zhu, Lin
    You, Zhu-Hong
    Huang, De-Shuang
    Wang, Bing
    [J]. PLOS ONE, 2013, 8 (04):
  • [42] Prediction and systematic study of protein-protein interaction networks of Leptospira interrogans
    SUN Jingchun1
    2. Biomedical Engineering
    3. Department of Microbiology and Parasitology
    4. Bioinformation Center
    [J]. Science Bulletin, 2006, (11) : 1296 - 1305
  • [43] Discovering functional interaction patterns in protein-protein interaction networks
    Turanalp, Mehmet E.
    Can, Tolga
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [44] Fitting a geometric graph to a protein-protein interaction network
    Higham, Desmond J.
    Rasajski, Marija
    Przulji, Natasa
    [J]. BIOINFORMATICS, 2008, 24 (08) : 1093 - 1099
  • [45] Discovering functional interaction patterns in protein-protein interaction networks
    Mehmet E Turanalp
    Tolga Can
    [J]. BMC Bioinformatics, 9
  • [46] Prediction of contact matrix for protein-protein interaction
    Gonzalez, Alvaro J.
    Liao, Li
    Wu, Cathy H.
    [J]. BIOINFORMATICS, 2013, 29 (08) : 1018 - 1025
  • [47] Geometric Deep Learning for Protein-Protein Interaction Predictions
    Lemieux, Gabriel St-Pierre
    Paquet, Eric
    Viktor, Herna L.
    Michalowski, Wojtek
    [J]. IEEE ACCESS, 2022, 10 : 90045 - 90055
  • [48] Engagement of intrinsic disordered proteins in protein-protein interaction
    Roterman, Irena
    Stapor, Katarzyna
    Konieczny, Leszek
    [J]. FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 10
  • [49] NOXclass: prediction of protein-protein interaction types
    Zhu, HB
    Domingues, FS
    Sommer, I
    Lengauer, T
    [J]. BMC BIOINFORMATICS, 2006, 7
  • [50] NOXclass: prediction of protein-protein interaction types
    Hongbo Zhu
    Francisco S Domingues
    Ingolf Sommer
    Thomas Lengauer
    [J]. BMC Bioinformatics, 7 (1)