Binary differential evolution with self-learning for multi-objective feature selection

被引:306
|
作者
Zhang, Yong [1 ]
Gong, Dun-wei [1 ]
Gao, Xiao-zhi [2 ]
Tian, Tian [3 ]
Sun, Xiao-yan [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou, Jiangsu, Peoples R China
[2] Univ Eastern Finland, Sch Comp, Kuopio, Finland
[3] Shandong Jianzhu Univ, Sch Comp Sci & Technol, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential evolution; Multi-objective optimization; Feature selection; Self-learning; FEATURE SUBSET-SELECTION; ARTIFICIAL BEE COLONY; PARTICLE SWARM OPTIMIZATION; SEARCH ALGORITHM;
D O I
10.1016/j.ins.2019.08.040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection is an important data preprocessing method. This paper studies a new multi-objective feature selection approach, called the Binary Differential Evolution with self-learning (MOFS-BDE). Three new operators are proposed and embedded into the MOFS-BDE to improve its performance. The novel binary mutation operator based on probability difference can guide individuals to rapidly locate potentially optimal areas, the developed One-bit Purifying Search operator (OPS) can improve the self-learning capability of the elite individuals located in the optimal areas, and the efficient non-dominated sorting operator with crowding distance can reduce the computational complexity of the selection operator in the differential evolution. Experimental results on a series of public datasets show that the effective combination of the binary mutation and OPS makes our MOFS-BDE achieve a trade-off between local exploitation and global exploration. The proposed method is competitive in comparison with some representative genetic algorithm-, particle swarm-, differential evolution-, and artificial bee colony-based feature selection algorithms. (C) 2019 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:67 / 85
页数:19
相关论文
共 50 条
  • [31] An efficient ensemble learning method based on multi-objective feature selection
    Zhou, Xiaojun
    Yuan, Weijun
    Gao, Qian
    Yang, Chunhua
    INFORMATION SCIENCES, 2024, 679
  • [32] A self-learning network reconfiguration using fuzzy preferences multi-objective approach
    Sun, H. (hbsun@mail.dhu.edu.cn), 1600, Universitas Ahmad Dahlan (11):
  • [33] Multi-Objective Feature Selection in QSAR Using a Machine Learning Approach
    Soto, Axel J.
    Cecchini, Rocio L.
    Vazquez, Gustavo E.
    Ponzoni, Ignacio
    QSAR & COMBINATORIAL SCIENCE, 2009, 28 (11-12): : 1509 - 1523
  • [34] Multi-objective adaptive differential evolution for SVM/SVR hyperparameters selection
    Santos, Carlos Eduardo da Silva
    Sampaio, Renato Coral
    Coelho, Leandro dos Santos
    Bestard, Guillermo Alvarez
    Llanos, Carlos Humberto
    PATTERN RECOGNITION, 2021, 110
  • [35] Multi-objective adaptive differential evolution for SVM/SVR hyperparameters selection
    Santos, Carlos Eduardo da Silva
    Sampaio, Renato Coral
    Coelho, Leandro dos Santos
    Bestarsd, Guillermo Alvarez
    Llanos, Carlos Humberto
    Pattern Recognition, 2021, 110
  • [36] Differential evolution for multi-objective clustering
    Wang, Hui
    Zeng, Sanyou
    Chen, Liang
    Shi, Hui
    Zhang, Cheng
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 124 - 127
  • [37] Differential evolution for multi-objective optimization
    Babu, BV
    Jehan, MML
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2696 - 2703
  • [38] Multi-Objective Compact Differential Evolution
    Osorio Velazquez, Jesus Moises
    Coello Coello, Carlos A.
    Arias-Montano, Alfredo
    2014 IEEE SYMPOSIUM ON DIFFERENTIAL EVOLUTION (SDE), 2014, : 49 - 56
  • [39] Research on Feature Selection of Multi-Objective Optimization
    Zhang, Mengting
    Du, Jianqiang
    Luo, Jigen
    Nie, Bin
    Xiong, Wangping
    Liu, Ming
    Zhao, Shuhan
    Computer Engineering and Applications, 2024, 59 (03) : 23 - 32
  • [40] MLFS-CCDE: multi-objective large-scale feature selection by cooperative coevolutionary differential evolution
    Haoran Li
    Fazhi He
    Yilin Chen
    Yiteng Pan
    Memetic Computing, 2021, 13 : 1 - 18