Recent efficient strategies for improving the moisture stability of perovskite solar cells

被引:135
|
作者
Li, Faming [1 ,2 ]
Liu, Mingzhen [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Appl Chem, Chengdu, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, State Key Lab Elect Thin Film & Integrated Device, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
LEAD IODIDE PEROVSKITE; ORGANOMETAL TRIHALIDE PEROVSKITE; ELECTRON TRANSPORTING LAYER; STABLE PLANAR PEROVSKITE; EXCITON BINDING-ENERGY; HIGH-PERFORMANCE; HALIDE PEROVSKITE; LOW-TEMPERATURE; CH3NH3PBI3; PEROVSKITE; HIGHLY EFFICIENT;
D O I
10.1039/c7ta01325f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the past few years, hybrid organic-inorganic perovskite solar cells (PSCs) have attracted much attention due to their excellent photovoltaic performance and extremely low fabrication costs. The power conversion efficiency (PCEs) of these PSCs has lepts from 3.8% to a verified PCE of 22.1% within just 7 years. However, the limited long-term stability of PSCs still restricts them from industrial applications, and furthermore, chemical decomposition in humid environments has been recognized as a main degradation pathway of perovskite materials. Although encapsulation techniques are usually used in the field of organic photovoltaics to slow down the degradation of organic materials, the key to resolving the degradation issues related to PSCs is to find stable perovskite materials or device architectures capable of achieving long-term stability. This review discusses the current popular strategies for enhancing the stability of PSCs, which are mostly, in general, concerned with modifying the properties of either the perovskite material itself or the charge transport layers. The stability of perovskite materials is usually optimized by compositional engineering with halides and cations. Meanwhile, on the other hand, incorporating inorganic charge transport layers or an interfacial moisture-resistant agent into PSCs are also considered as effective routes to sustain the device stability as well as to retain the performance of PSCs. This review systemically summarizes the recent efficient strategies for improving the long-term stability of PSC devices and provides useful suggestions for further developments in PSC stability.
引用
收藏
页码:15447 / 15459
页数:13
相关论文
共 50 条
  • [1] Recent Advances in Improving the Stability of Perovskite Solar Cells
    Nguyen Huy Tiep
    Ku, Zhiliang
    Fan, Hong Jin
    ADVANCED ENERGY MATERIALS, 2016, 6 (03)
  • [2] Strategies for Improving Efficiency and Stability of Perovskite Solar Cells
    Xiaoli Zheng
    Yang Bai
    Shuang Xiao
    Xiangyue Meng
    Teng Zhang
    Shihe Yang
    MRS Advances, 2017, 2 (53) : 3051 - 3060
  • [3] Recent Advances in Improving Phase Stability of Perovskite Solar Cells
    Qiu, Zhiwen
    Li, Nengxu
    Huang, Zijian
    Chen, Qi
    Zhou, Huanping
    SMALL METHODS, 2020, 4 (05)
  • [4] Strategies for Improving Efficiency and Stability of Inverted Perovskite Solar Cells
    Zhang, Wenxiao
    Guo, Xuemin
    Cui, Zhengbo
    Yuan, Haobo
    Li, Yunfei
    Li, Wen
    Li, Xiaodong
    Fang, Junfeng
    ADVANCED MATERIALS, 2024, 36 (37)
  • [5] Research Update: Strategies for improving the stability of perovskite solar cells
    Habisreutinger, Severin N.
    McMeekin, David P.
    Snaith, Henry J.
    Nicholas, Robin J.
    APL MATERIALS, 2016, 4 (09):
  • [6] Moisture stability in nanostructured perovskite solar cells
    Byranvand, Mahdi Malekshahi
    Kharat, Ali Nemati
    Taghavinia, Nima
    MATERIALS LETTERS, 2019, 237 : 356 - 360
  • [7] Tetrazole modulated perovskite films for efficient solar cells with improved moisture stability
    Xie, Lisha
    Deng, Xiaoyu
    Li, Chengbo
    Cui, Yuying
    Cao, Zhiyuan
    Wang, Aili
    Wang, Shurong
    Chen, Yuanming
    Wang, Zhi
    Liu, Yaqing
    Bao, Qinye
    Ding, Liming
    Hao, Feng
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [8] Stability of Unstable Perovskites: Recent Strategies for Making Stable Perovskite Solar Cells
    Mali, Sawanta S.
    Patil, Jyoti V.
    Arandiyan, Hamidreza
    Luque, Rafael
    Hong, Chang Kook
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2019, 8 (06) : Q111 - Q117
  • [9] Recent progress in stability of perovskite solar cells
    Xiaojun Qin
    Zhiguo Zhao
    Yidan Wang
    Junbo Wu
    Qi Jiang
    Jingbi You
    Journal of Semiconductors, 2017, 38 (01) : 6 - 14
  • [10] A brief review on the moisture stability for perovskite solar cells
    Xu, Hongming
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND MATERIALS SCIENCE, 2020, 585