From action to activity: Sensor-based activity recognition

被引:408
|
作者
Liu, Ye [1 ]
Nie, Liqiang [1 ]
Liu, Li [1 ]
Rosenblum, David S. [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 117548, Singapore
关键词
Activity recognition; Temporal pattern mining; Sensor-generated data; Discriminative feature extraction; MODELS;
D O I
10.1016/j.neucom.2015.08.096
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As compared to actions, activities are much more complex, but semantically they are more representative of a human's real life. Techniques for action recognition from sensor-generated data are mature. However, few efforts have targeted sensor-based activity recognition. In this paper, we present an efficient algorithm to identify temporal patterns among actions and utilize the identified patterns to represent activities for automated recognition. Experiments on a real-world dataset demonstrated that our approach is able to recognize activities with high accuracy from temporal patterns, and that temporal patterns can be used effectively as a mid-level feature for activity representation. (C) 2015 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:108 / 115
页数:8
相关论文
共 50 条
  • [31] A Pattern Mining Approach to Sensor-Based Human Activity Recognition
    Gu, Tao
    Wang, Liang
    Wu, Zhanqing
    Tao, Xianping
    Lu, Jian
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (09) : 1359 - 1372
  • [32] Enhancing Representation of Deep Features for Sensor-Based Activity Recognition
    Xue Li
    Lanshun Nie
    Xiandong Si
    Renjie Ding
    Dechen Zhan
    Mobile Networks and Applications, 2021, 26 : 130 - 145
  • [33] A Study on Diffusion Modelling For Sensor-based Human Activity Recognition
    Shao, Shuai
    Sanchez, Victor
    2023 11TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS, IWBF, 2023,
  • [34] Wearable Sensor-Based Human Activity Recognition with Transformer Model
    Dirgova Luptakova, Iveta
    Kubovcik, Martin
    Pospichal, Jiri
    SENSORS, 2022, 22 (05)
  • [35] Sensor-Based Activity Recognition with Improved GP-based Classifier
    Xie, Feng
    Qin, A. K.
    Song, Andy
    Ciesielski, Vic
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 3043 - 3050
  • [36] Sensor-Based Datasets for Human Activity Recognition - A Systematic Review of Literature
    De-La-Hoz-Franco, Emiro
    Ariza-Colpas, Paola
    Medina Quero, Javier
    Espinilla, Macarena
    IEEE ACCESS, 2018, 6 : 59192 - 59210
  • [37] Sensor-based activity recognition: One picture is worth a thousand words
    Riboni, Daniele
    Murtas, Marta
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 101 : 709 - 722
  • [38] Automatic Labeling Framework for Wearable Sensor-based Human Activity Recognition
    Liang, Guanhao
    Luo, Qingsheng
    Jia, Yan
    SENSORS AND MATERIALS, 2018, 30 (09) : 2049 - 2071
  • [39] A Practical Wearable Sensor-based Human Activity Recognition Research Pipeline
    Liu, Hui
    Hartmann, Yale
    Schultz, Tanja
    HEALTHINF: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF, 2021, : 847 - 856
  • [40] Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition
    Fong, Simon
    Song, Wei
    Cho, Kyungeun
    Wong, Raymond
    Wong, Kelvin K. L.
    SENSORS, 2017, 17 (03)