A Semi-supervised Clustering via Orthogonal Projection

被引:0
|
作者
Cui Peng [1 ]
Zhang Ru-bo [1 ]
机构
[1] Harbin Engn Univ, Harbin 150001, Peoples R China
关键词
dimension reduction; clustering; projection; semi-supervised learning;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As dimensionality is very high, image feature space is usually complex. For effectively processing this space, technology of dimensionality reduction is widely used. Semi-supervised clustering incorporates limited information into unsupervised clustering in order to improve clustering performance. However, many existing semi-supervised clustering methods can not be used to handle high-dimensional sparse data. To solve this problem, we proposed a semi-supervised fuzzy clustering method via constrained orthogonal projection. With results of experiments on different datasets, it shows the method has good clustering performance for handling high dimensionality data.
引用
收藏
页码:356 / 359
页数:4
相关论文
共 50 条
  • [41] Semi-Supervised Clustering with Neural Networks
    Shukla, Ankita
    Cheema, Gullal S.
    Anand, Saket
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2020), 2020, : 152 - 161
  • [42] Evolutionary semi-supervised fuzzy clustering
    Liu, H
    Huang, ST
    PATTERN RECOGNITION LETTERS, 2003, 24 (16) : 3105 - 3113
  • [43] A Semi-supervised Clustering for Incomplete Data
    Goel, Sonia
    Tushir, Meena
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 323 - 331
  • [44] Active semi-supervised fuzzy clustering
    Grira, Nizar
    Crucianu, Michel
    Boujemaa, Nozha
    PATTERN RECOGNITION, 2008, 41 (05) : 1834 - 1844
  • [45] Semi-supervised hierarchical clustering algorithms
    Amar, A
    Labzour, NT
    Bensaid, A
    SIXTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1997, 40 : 232 - 239
  • [46] Input validation for semi-supervised clustering
    Yip, Kevin Y.
    Ng, Michael K.
    Cheung, David W.
    ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 479 - 483
  • [47] Research Progress on Semi-Supervised Clustering
    Qin, Yue
    Ding, Shifei
    Wang, Lijuan
    Wang, Yanru
    COGNITIVE COMPUTATION, 2019, 11 (05) : 599 - 612
  • [48] A survey on semi-supervised graph clustering
    Daneshfar, Fatemeh
    Soleymanbaigi, Sayvan
    Yamini, Pedram
    Amini, Mohammad Sadra
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133 (133)
  • [49] Semi-supervised deep density clustering
    Xu, Xiao
    Hou, Haiwei
    Ding, Shifei
    APPLIED SOFT COMPUTING, 2023, 148
  • [50] Composite kernels for semi-supervised clustering
    Carlotta Domeniconi
    Jing Peng
    Bojun Yan
    Knowledge and Information Systems, 2011, 28 : 99 - 116