Eigenpolynomials of a 2-D harmonic signal

被引:1
|
作者
Li, HW [1 ]
Cheng, QS [1 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Informat Sci, Beijing 100871, Peoples R China
关键词
eigenpolynomial; 2-D harmonic signal;
D O I
10.1109/97.661566
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the characteristic polynomials of two-dimensional (2-D) harmonics, The concept of the eigenpolynomial of a 2-D harmonic signal is presented, A representation formula of the eigenpolynomial is given and proved. An advantage of the eigenpolynomials is that they can uniquely determine the frequency pairs of a 2-D harmonic signal.
引用
收藏
页码:71 / 73
页数:3
相关论文
共 50 条
  • [31] Time-harmonic BEM for 2-D piezoelectricity applied to eigenvalue problems
    Denda, M
    Araki, Y
    Yong, YK
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (26) : 7241 - 7265
  • [32] Signal Processing and Coding Techniques for 2-D Magnetic Recording: An Overview
    Garani, Shayan Srinivasa
    Dolecek, Lara
    Barry, John
    Sala, Frederic
    Vasic, Bane
    PROCEEDINGS OF THE IEEE, 2018, 106 (02) : 286 - 318
  • [33] Data analytic wavelet threshold selection in 2-D signal denoising
    Hilton, ML
    Ogden, RT
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 496 - 500
  • [34] Digital signal processing solutions to 2-D phase retrieval problems
    Yagle, AE
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 3, 1998, : 712 - 716
  • [35] ECG Signal Compression using 2-D DWT Hermite Coefficients
    Kanhe, R. K.
    Hamde, S. T.
    2016 INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (ICONSIP), 2016,
  • [36] Eigenvalue analysis for 2-D piezoelectric problems by the time-harmonic BEM
    Denda, M
    Araki, Y
    MECHANICS OF ELECTROMAGNETIC MATERIAL SYSTEMS AND STRUCTURES, 2003, : 261 - 268
  • [37] BOUNDARY COLLOCATION METHOD VS FEM FOR SOME HARMONIC 2-D PROBLEMS
    KOLODZIEJ, JA
    KLEIBER, M
    COMPUTERS & STRUCTURES, 1989, 33 (01) : 155 - 168
  • [38] Harmonic Balance Method and Convergence of the 2-D Nonlinear Eddy Current Problem
    Petukhov, Igor S.
    2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 185 - 190
  • [39] 2-D geometric signal compression method based on compressed sensing
    Du Zhuo-ming
    Geng Guo-hua
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 601 - 604
  • [40] Reconfigurable pipelined 2-D convolvers for fast digital signal processing
    Bosi, B
    Bois, G
    Savaria, Y
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 1999, 7 (03) : 299 - 308