A note on Lagrange interpolation for |x|λ at equidistant nodes

被引:1
|
作者
Ganzburg, MI [1 ]
Revers, M
机构
[1] Hampton Univ, Dept Math, Hampton, VA 23668 USA
[2] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
关键词
D O I
10.1017/S0004972700034729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we discuss the exceptional set E subset of or equal to [-1,1] of points x(0) satisfying the inequality lim(n-->infinity)inf n(-1) log\\x\(lambda)-L-n(f(lambda), x(0))\ <(1)/(2) [(1+x(0))log(1-x(0))+(1-x(0))log(1-x(0))], where lambda > 0, lambda not equal 2, 4,... and L-n(f(lambda),.) is the Lagrange interpolation polynomial of degree at most n to f(lambda)(x) := \x\(lambda) on the interval [-1, 1] associated with the equidistant nodes. It is known that E has Lebesgue measure zero. Here we show that E contains infinite families of rational and irrational numbers.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 50 条
  • [21] LACUNARY TRIGONOMETRIC INTERPOLATION ON EQUIDISTANT NODES (CONVERGENCE)
    SHARMA, A
    VARMA, AK
    JOURNAL OF APPROXIMATION THEORY, 1982, 35 (01) : 45 - 63
  • [22] ON HERMITE-FEJER INTERPOLATION WITH EQUIDISTANT NODES
    BAKER, GB
    MILLS, TM
    VERTESI, P
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 48 : 461 - 471
  • [23] ON A MINIMAL PROPERTY OF TRIGONOMETRIC INTERPOLATION AT EQUIDISTANT NODES
    SUNDERMANN, B
    COMPUTING, 1981, 27 (04) : 371 - 372
  • [24] PERIODIC CUBIC SPLINE INTERPOLATION WITH EQUIDISTANT NODES
    FORD, WS
    COMPUTER JOURNAL, 1975, 18 (02): : 183 - 184
  • [25] BIVARIATE LAGRANGE INTERPOLATION AT THE CHEBYSHEV NODES
    Harris, Lawrence A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) : 4447 - 4453
  • [26] On Lagrange interpolation with equally spaced nodes
    Revers, M
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (03) : 357 - 368
  • [27] BIVARIATE LAGRANGE INTERPOLATION AT THE CHECKERBOARD NODES
    Cao, Lihua
    Ghimire, Srijana
    Wang, Xiang-Sheng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) : 2153 - 2163
  • [28] Barycentric rational interpolation at quasi-equidistant nodes
    Hormann, Kai
    Klein, Georges
    De Marchi, Stefano
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2012, 5 : 1 - 6
  • [29] Norms on L of Periodic Interpolation Splines with Equidistant Nodes
    Yu. N. Subbotin
    S. A. Telyakovskii
    Mathematical Notes, 2003, 74 : 100 - 109
  • [30] On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
    Bos, Len
    De Marchi, Stefano
    Hormann, Kai
    Klein, Georges
    NUMERISCHE MATHEMATIK, 2012, 121 (03) : 461 - 471