A note on Lagrange interpolation for |x|λ at equidistant nodes

被引:1
|
作者
Ganzburg, MI [1 ]
Revers, M
机构
[1] Hampton Univ, Dept Math, Hampton, VA 23668 USA
[2] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
关键词
D O I
10.1017/S0004972700034729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we discuss the exceptional set E subset of or equal to [-1,1] of points x(0) satisfying the inequality lim(n-->infinity)inf n(-1) log\\x\(lambda)-L-n(f(lambda), x(0))\ <(1)/(2) [(1+x(0))log(1-x(0))+(1-x(0))log(1-x(0))], where lambda > 0, lambda not equal 2, 4,... and L-n(f(lambda),.) is the Lagrange interpolation polynomial of degree at most n to f(lambda)(x) := \x\(lambda) on the interval [-1, 1] associated with the equidistant nodes. It is known that E has Lebesgue measure zero. Here we show that E contains infinite families of rational and irrational numbers.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 50 条