On class number formula for the real quadratic fields
被引:0
|
作者:
Sato, H
论文数: 0引用数: 0
h-index: 0
机构:
Sci Univ Tokyo, Dept Math, Grad Sch Sci, Shinjuku Ku, Tokyo 1628601, JapanSci Univ Tokyo, Dept Math, Grad Sch Sci, Shinjuku Ku, Tokyo 1628601, Japan
Sato, H
[1
]
机构:
[1] Sci Univ Tokyo, Dept Math, Grad Sch Sci, Shinjuku Ku, Tokyo 1628601, Japan
Let k > 1 be the fundamental discriminant, and let chi(n), epsilon and h be the real primitive character modulo k, the fundamental unit and the class number of the real quadratic field Q(rootk), respectively. And let [x] denote the greatest integer not greater than x. In [3], M.-G. Leu showed h=[rootk/(2logepsilon) Sigma(n=1)(k) chi(n)/n]+1 for all k, and h= [rootk/(2logepsilon) Sigma(n=1)([k/2]) chi(n)/n] in the case knot equalm(2)+4 with m is an element of Z.