共 50 条
Compost applications increase bacterial community diversity in the apple rhizosphere
被引:12
|作者:
Sharaf, Hazem
[1
,2
]
Thompson, Ashley A.
[3
,4
]
Williams, Mark A.
[2
]
Peck, Gregory M.
[5
]
机构:
[1] Virginia Polytech Inst & State Univ, Interdisciplinary PhD Program Genet Bioinformat &, Blacksburg, VA 24601 USA
[2] Virginia Polytech Inst & State Univ, Sch Plant & Environm Sci, Blacksburg, VA 24601 USA
[3] Virginia Polytech Inst & State Univ, Alson H Smith Jr Agr Res & Extens Ctr, Dept Hort, 595 Laurel Grove Rd, Winchester, VA 22602 USA
[4] Oregon State Univ, Dept Hort, 400 E Scenic Dr, Dalles, OR 97058 USA
[5] Cornell Univ, Sch Integrat Plant Sci, Hort Sect, 121 Plant Sci Bldg, Ithaca, NY 14853 USA
关键词:
MICROBIAL COMMUNITIES;
TREE GROWTH;
SOIL;
FERTILIZATION;
AMENDMENTS;
GENOTYPE;
CARBON;
RESISTANCE;
FUMIGATION;
SELECTION;
D O I:
10.1002/saj2.20251
中图分类号:
S15 [土壤学];
学科分类号:
0903 ;
090301 ;
摘要:
Sustainable practices are key to the improvement of soil fertility and quality in apple (Malus x domestica Borkh.) orchards. Rootstock genotype and fertilizer inputs can alter soil biology, as well as aboveground traits including nutrient acquisition. In this study, a factorial design was used to assess the interaction between two apple rootstocks, 'Geneva 41' ('G.41') and 'Malling 9' ('M.9') with four fertilizer treatments [chicken-litter compost, yardwaste compost, fertigation using Ca(NO3)(2), and an unamended control]. The bacterial community in the rhizosphere was assessed for its impact on both plant and soil properties for each rootstock x fertilizer treatment combination. The bacterial community was dominated by Acidobacteria, Proteobacteria, and Planctomycetes, but Verrucomicrobia and Chloroflexi were the most responsive to the fertilizer treatments. The chicken litter and yardwaste treatments had a greater effect on bacterial community structure than the control. Yardwaste, in particular, was associated with increased relative abundance of Chloroflexi, which was correlated with soil nutrient concentrations. Malling 9 had a greater bacterial diversity than G.41, but the rootstock treatment had no independent effect on the rhizosphere community structure. There was, however, a strong interaction between the rootstock and fertilizer treatments. Carbon cycling was the most prominent functional change associated with the soil bacterial community. These results suggest that compost amendments have a more positive effect on soil bacterial activity and nutrient availability than Ca(NO3)(2). Our work shows that waste-stream amendments can lead to multiple positive responses, such as increasing aboveground tree biomass, thus potentially improving orchard productivity.
引用
收藏
页码:1105 / 1121
页数:17
相关论文