Some remarks on complementarity problems in a Hilbert space

被引:0
|
作者
Carbone, A [1 ]
Zabreiko, PP
机构
[1] Univ Calabria, Dipartimento Matemat, IT-87036 Cosenza, Italy
[2] Natl Acad Sci, Inst Math, Minsk 220072, BELARUS
[3] Belarusian State Univ, Fac Mech & Math, Minsk 220050, BELARUS
来源
关键词
complementarity problems; topological degree; exceptional elements; homotopy; operator of class S+; quasi-monotone operators;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new approach to the analysis of solvability properties for complementarity problems in a Hilbert space. This approach is based on the Skrypnik degree which, in the case of mappings in a Hilbert space, is essentially more general in comparison with the classical Leray-Schauder degree. Namely, the Skrypnik degree allows us to obtain some new results about solvability of complementarity problems in the infinite-dimensional case. The case of generalized solutions is also considered.
引用
收藏
页码:1005 / 1014
页数:10
相关论文
共 50 条
  • [11] ON THE LORENTZ CONE COMPLEMENTARITY PROBLEMS IN INFINITE-DIMENSIONAL REAL HILBERT SPACE
    Miao, Xin-He
    Chen, Jein-Shan
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (05) : 507 - 523
  • [12] SOME EXTREMAL PROBABILITY PROBLEMS IN HILBERT-SPACE
    PINELIS, IF
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1985, 29 (02) : 419 - 420
  • [13] On some problems for operators on the reproducing kernel Hilbert space
    Garayev, M. T.
    Guediri, H.
    Gurdal, M.
    Alsahli, G. M.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (11): : 2059 - 2077
  • [15] SOME REMARKS ABOUT BOUNDED DERIVATIONS ON THE HILBERT SPACE OF SQUARE SUMMABLE MATRICES
    Barrenechea, Ana L.
    Pena, Carlos C.
    MATEMATICKI VESNIK, 2005, 57 (3-4): : 79 - 85
  • [16] SOME PROBLEMS OF THEORY OF OPERATOR EQUATIONS IN A HILBERT-SPACE
    MIKHLIN, SG
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1975, (01): : 109 - 115
  • [17] SOME REMARKS ON HILBERT REPRESENTATIONS OF POSETS
    Ostrovskyi, V.
    Rabanovich, S.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2014, 20 (02): : 149 - 163
  • [18] Maps Preserving Complementarity of Closed Subspaces of a Hilbert Space
    Plevnik, Lucijan
    Semrl, Peter
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (05): : 1143 - 1166
  • [19] On Strongly Nonlinear Implicit Complementarity Problems in Hilbert Spaces
    Cho, Yeol Je
    Huang, Nan-Jing
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (01): : 145 - 152
  • [20] Isotonicity of the Metric Projection and Complementarity Problems in Hilbert Spaces
    Kong, Dezhou
    Liu, Lishan
    Wu, Yonghong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 175 (02) : 341 - 355