Are all particles real?

被引:20
|
作者
Goldstein, S
Taylor, J
Tumulka, R
Zanghi, N
机构
[1] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy
[2] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[4] Marymount Univ, Dept Math, Arlington, VA 22207 USA
来源
关键词
bohmian mechanics; ontology; empirical equivalence; fundamental limitations of science; particle trajectories in quantum physics;
D O I
10.1016/j.shpsb.2004.11.005
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
In Bohmian mechanics elementary particles exist objectively, as point particles moving according to a law determined by a wavefunction. In this context, questions as to whether the particles of a certain species are real-questions such as, Do photons exist? Electrons? Or Just the quarks?-have a clear meaning. We explain that, whatever the answer, there is a corresponding Bohm-type theory, and no experiment can ever decide between these theories. Another question that has a clear meaning is whether particles are intrinsically distinguishable, i.e., whether particle world lines have labels indicating the species. We discuss the intriguing possibility that the answer is no, and particles are points-just points. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 50 条
  • [21] ILLUSTRATION OF MORPHOLOGY OF PARTICLES IN REAL DIMENSIONS
    FARGES, P
    BULLETIN DE LA SOCIETE FRANCAISE DE CERAMIQUE, 1972, (95): : 19 - &
  • [22] Size measurement of particles in real time
    Wang, Weixing
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 714 - 719
  • [23] Locally real states of photons and particles
    Mirell, S
    PHYSICAL REVIEW A, 2002, 65 (03): : 22
  • [24] Analyze particles in real-time
    不详
    R&D MAGAZINE, 2000, 42 (05): : F9 - F9
  • [25] Characterization of bulk particles in real time
    Bonifazi, Giuseppe
    La Marca, Floriana
    Massacci, Paolo
    Particle and Particle Systems Characterization, 2002, 19 (04): : 240 - 246
  • [26] COUNTING REAL RATIONAL FUNCTIONS WITH ALL REAL CRITICAL VALUES
    Shapiro, Boris
    Vainshtein, Alek
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (02) : 647 - 659
  • [27] REMARK ON REAL TRIGONOMETRIC POLYNOMIALS OF WHICH ALL ROOTS ARE REAL
    PICHORIDES, SK
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (01): : 17 - 19
  • [29] Waxes - Real all-rounders
    Bilger, Michael
    Leyh, Tina
    Schütz, Sebastian
    Farbe und Lack, 2021, 127 (10): : 28 - 34
  • [30] POLYNOMIAL APPROXIMATIONS ON ALL OF REAL LINE
    BLOOM, DM
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (01): : 80 - &