Transfer learning for remaining useful life prediction of multi-conditions bearings based on bidirectional-GRU network

被引:114
|
作者
Cao, Yudong [1 ]
Jia, Minping [1 ]
Ding, Peng [1 ]
Ding, Yifei [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
Transfer learning; BiGRU model; Remaining useful life prediction; Multi-conditions bearings; AUTOENCODER;
D O I
10.1016/j.measurement.2021.109287
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Remaining useful life (RUL) prediction, has been a hotspot topic in the engineering field, which can ensure the security, availability, and continuous efficiency of the system. Different degradation trajectories of bearings under various working conditions may lead to the problem of inconsistent feature distribution and difficult acquisition of corresponding training labels, which affects the validity and accuracy of the prediction model. In this paper, a new transfer learning method based on bidirectional Gated Recurrent Unit (TBiGRU) is proposed to accurately predict the RUL of bearings under different working conditions. Firstly, based on dynamic time wraping (DTW) and Wasserstein distance to construct a comprehensive evaluation index of feature, the selection of transferable feature is carried out. Then a new index of energy entropy moving average cross-correlation based on maximal overlap discrete wavelet transform (MODWT) is proposed to realize adaptive recognition of bearings running states and the acquisition of corresponding training labels, which can also get rid of the constraint of setting threshold. Finally, transfer learning is carried out on the BiGRU model to solve the problem of distribution discrepancy, and timing information is also taken into account. The method is applied to the analysis of experimental data, and the results show that the framework can adaptively recognize different running states of bearings and obtain corresponding training labels, and at the same time realize better RUL prediction performance under different working conditions.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [31] Remaining useful life prediction of rolling bearings based on time convolutional network and transformer in parallel
    Tang, Youfu
    Liu, Ruifeng
    Li, Chunhui
    Lei, Na
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [32] Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings
    Wu, Jinxin
    He, Deqiang
    Li, Jiayi
    Miao, Jian
    Li, Xianwang
    Li, Hongwei
    Shan, Sheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 247
  • [33] A Remaining Useful Life Prediction Approach with Nonuniform Monitoring Conditions for Rolling Bearings
    Wang Y.
    Liu Q.
    Peng Y.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (23): : 96 - 104
  • [34] Remaining Useful Life Prediction of Bearings Based on Convolution Attention Mechanism and Temporal Convolution Network
    Wang, Haitao
    Yang, Jie
    Wang, Ruihua
    Shi, Lichen
    IEEE ACCESS, 2023, 11 : 24407 - 24419
  • [35] Dilated Convolutional Recurrent Deep Network with Transfer Learning for Remaining Useful Life Prediction
    Lee, Jing Yang
    Das, Ankit K.
    Hussain, Shaista
    Feng, Yang
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, 2020, 12237 : 153 - 164
  • [36] Bi-LSTM neural network for remaining useful life prediction of bearings
    Shen Y.-B.
    Zhang X.-L.
    Xia Y.
    Yang J.
    Chen S.-D.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2021, 34 (02): : 411 - 420
  • [37] Remaining Useful Life Prediction for Bearings Based on a Gated Recurrent Unit
    Que, Zijun
    Jin, Xiaohang
    Xu, Zhengguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [38] Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Transfer Learning
    Mao, Wentao
    He, Jianliang
    Zuo, Ming J.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (04) : 1594 - 1608
  • [39] Adversarial Transfer Learning for Machine Remaining Useful Life Prediction
    Ragab, Mohamed
    Chen, Zhenghua
    Wu, Min
    Kwoh, Chee Keong
    Li, Xiaoli
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,
  • [40] Remaining Useful Life Prediction Based on Incremental Learning
    Que, Zijun
    Jin, Xiaohang
    Xu, Zhengguo
    Hu, Chang
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (02) : 876 - 884