AUTOMATIC QUALITY ASSESSMENT OF TRANSPERINEAL ULTRASOUND IMAGES OF THE MALE PELVIC REGION, USING DEEP LEARNING

被引:9
|
作者
Camps, S. M. [1 ,2 ]
Houben, T. [1 ]
Carneiro, G. [3 ]
Edwards, C. [4 ]
Antico, M. [5 ,6 ]
Dunnhofer, M. [7 ]
Martens, E. G. H. J. [8 ]
Baeza, J. A. [8 ]
Vanneste, B. G. L. [8 ]
van Limbergen, E. J. [8 ]
de With, P. H. N. [1 ]
Verhaegen, F. [8 ]
Fontanarosa, D. [4 ,5 ]
机构
[1] Eindhoven Univ Technol, Fac Elect Engn, Eindhoven, Netherlands
[2] Philips Res, Oncol Solut Dept, Eindhoven, Netherlands
[3] Univ Adelaide, Australian Ctr Visual Technol, Adelaide, SA, Australia
[4] Queensland Univ Technol, Sch Clin Sci, Gardens Point Campus,2 George St, Brisbane, Qld 4000, Australia
[5] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld, Australia
[6] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld, Australia
[7] Univ Udine, Dept Math Comp Sci & Phys, Udine, Italy
[8] GROW Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, Maastricht, Netherlands
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2020年 / 46卷 / 02期
基金
澳大利亚研究理事会;
关键词
Transperineal ultrasound imaging; Deep learning; Prostate; Image-guided radiotherapy; Ultrasound; Radiotherapy; EXTERNAL-BEAM RADIOTHERAPY; ONE-CLASS CLASSIFICATION; INTRA-FRACTION MOTION; PROSTATE; GUIDANCE;
D O I
10.1016/j.ultrasmedbio.2019.10.027
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasound guidance is not in widespread use in prostate cancer radiotherapy workflows. This can be partially attributed to the need for image interpretation by a trained operator during ultrasound image acquisition. In this work, a one-class regressor, based on DenseNet and Gaussian processes, was implemented to automatically assess the quality of transperineal ultrasound images of the male pelvic region. The implemented deep learning approach was tested on 300 transperineal ultrasound images and it achieved a scoring accuracy of 94%, a specificity of 95% and a sensitivity of 92% with respect to the majority vote of 3 experts, which was comparable with the results of these experts. This is the first step toward a fully automatic workflow, which could potentially remove the need for ultrasound image interpretation and make real-time volumetric organ tracking in the radio- therapy environment using ultrasound more appealing. (C) 2019 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:445 / 454
页数:10
相关论文
共 50 条
  • [21] Automatic detection of vessel structure by deep learning using intravascular ultrasound images of the coronary arteries
    Shinohara, Hiroki
    Kodera, Satoshi
    Ninomiya, Kota
    Nakamoto, Mitsuhiko
    Katsushika, Susumu
    Saito, Akihito
    Minatsuki, Shun
    Kikuchi, Hironobu
    Kiyosue, Arihiro
    Higashikuni, Yasutomi
    Takeda, Norifumi
    Fujiu, Katsuhito
    Ando, Jiro
    Akazawa, Hiroshi
    Morita, Hiroyuki
    Komuro, Issei
    PLOS ONE, 2021, 16 (08):
  • [22] Automatic localization of anatomical regions in medical ultrasound images of rheumatoid arthritis using deep learning
    Hemalatha, R. J.
    Vijaybaskar, V.
    Thamizhvani, T. R.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2019, 233 (06) : 657 - 667
  • [23] Automatic detection of A-line in lung ultrasound images using deep learning and image processing
    Xing, Wenyu
    Li, Guannan
    He, Chao
    Huang, Qiming
    Cui, Xulei
    Li, Qingli
    Li, Wenfang
    Chen, Jiangang
    Ta, Dean
    MEDICAL PHYSICS, 2023, 50 (01) : 330 - 343
  • [24] Automatic Identification of Ultrasound Images of the Tibial Nerve in Different Ankle Positions Using Deep Learning
    Kawanishi, Kengo
    Kakimoto, Akihiro
    Anegawa, Keisuke
    Tsutsumi, Masahiro
    Yamaguchi, Isao
    Kudo, Shintarou
    SENSORS, 2023, 23 (10)
  • [25] Fully automatic tumor segmentation of breast ultrasound images with deep learning
    Zhang, Shuai
    Liao, Mei
    Wang, Jing
    Zhu, Yongyi
    Zhang, Yanling
    Zhang, Jian
    Zheng, Rongqin
    Lv, Linyang
    Zhu, Dejiang
    Chen, Hao
    Wang, Wei
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (01):
  • [26] Deep Learning for Automatic Segmentation of Hybrid Optoacoustic Ultrasound (OPUS) Images
    Lafci, Berkan
    Mercep, Elena
    Morscher, Stefan
    Dean-Ben, Xose Luis
    Razansky, Daniel
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (03) : 688 - 696
  • [27] Automatic Aesthetic Quality Assessment Of Photographic Images Using Deep Convolutional Neural Network
    Suran, Sruthy
    Sreekumar, K.
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE (ICIS), 2016, : 77 - 82
  • [28] Automatic Assessment of Pectus Excavatum Severity From CT Images Using Deep Learning
    Silva, Bruno
    Pessanha, Ines
    Correia-Pinto, Jorge
    Fonseca, Jaime C.
    Queiros, Sandro
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (01) : 324 - 333
  • [29] Automatic Quantitative Assessment of Pectus Excavatum Severity Using CT Images and Deep Learning
    da Silva, Bruno Andre Pires
    ProQuest Dissertations and Theses Global,
  • [30] Deep learning-based quality-controlled spleen assessment from ultrasound images
    Yuan, Zhen
    Puyol-Anton, Esther
    Jogeesvaran, Haran
    Smith, Nicola
    Inusa, Baba
    King, Andrew P.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 76