AUTOMATIC QUALITY ASSESSMENT OF TRANSPERINEAL ULTRASOUND IMAGES OF THE MALE PELVIC REGION, USING DEEP LEARNING

被引:9
|
作者
Camps, S. M. [1 ,2 ]
Houben, T. [1 ]
Carneiro, G. [3 ]
Edwards, C. [4 ]
Antico, M. [5 ,6 ]
Dunnhofer, M. [7 ]
Martens, E. G. H. J. [8 ]
Baeza, J. A. [8 ]
Vanneste, B. G. L. [8 ]
van Limbergen, E. J. [8 ]
de With, P. H. N. [1 ]
Verhaegen, F. [8 ]
Fontanarosa, D. [4 ,5 ]
机构
[1] Eindhoven Univ Technol, Fac Elect Engn, Eindhoven, Netherlands
[2] Philips Res, Oncol Solut Dept, Eindhoven, Netherlands
[3] Univ Adelaide, Australian Ctr Visual Technol, Adelaide, SA, Australia
[4] Queensland Univ Technol, Sch Clin Sci, Gardens Point Campus,2 George St, Brisbane, Qld 4000, Australia
[5] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld, Australia
[6] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld, Australia
[7] Univ Udine, Dept Math Comp Sci & Phys, Udine, Italy
[8] GROW Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, Maastricht, Netherlands
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2020年 / 46卷 / 02期
基金
澳大利亚研究理事会;
关键词
Transperineal ultrasound imaging; Deep learning; Prostate; Image-guided radiotherapy; Ultrasound; Radiotherapy; EXTERNAL-BEAM RADIOTHERAPY; ONE-CLASS CLASSIFICATION; INTRA-FRACTION MOTION; PROSTATE; GUIDANCE;
D O I
10.1016/j.ultrasmedbio.2019.10.027
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasound guidance is not in widespread use in prostate cancer radiotherapy workflows. This can be partially attributed to the need for image interpretation by a trained operator during ultrasound image acquisition. In this work, a one-class regressor, based on DenseNet and Gaussian processes, was implemented to automatically assess the quality of transperineal ultrasound images of the male pelvic region. The implemented deep learning approach was tested on 300 transperineal ultrasound images and it achieved a scoring accuracy of 94%, a specificity of 95% and a sensitivity of 92% with respect to the majority vote of 3 experts, which was comparable with the results of these experts. This is the first step toward a fully automatic workflow, which could potentially remove the need for ultrasound image interpretation and make real-time volumetric organ tracking in the radio- therapy environment using ultrasound more appealing. (C) 2019 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:445 / 454
页数:10
相关论文
共 50 条
  • [1] Quality assessment of transperineal ultrasound images of the male pelvic region using deep learning
    Camps, Saskia
    Houben, Tim
    Edwards, Christopher
    Antico, Maria
    Dunnhofer, Matteo
    Martens, Esther
    Baeza, Jose
    Vanneste, Ben
    van Limbergen, Evert
    de With, Peter
    Verhaegen, Frank
    Carneiro, Gustavo
    Fontanarosa, Davide
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [2] Transperineal pelvic floor ultrasound in male
    Lanying Wu
    Yong Liu
    Ping Xu
    Min Yang
    International Urology and Nephrology, 2023, 55 : 3261 - 3268
  • [3] Transperineal pelvic floor ultrasound in male
    Wu, Lanying
    Liu, Yong
    Xu, Ping
    Yang, Min
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2023, 55 (12) : 3261 - 3268
  • [4] Assessment of pelvic floor movement using transabdominal and transperineal ultrasound
    Thompson, JA
    O'Sullivan, PB
    Briffa, K
    Neumann, P
    Court, S
    INTERNATIONAL UROGYNECOLOGY JOURNAL, 2005, 16 (04) : 285 - 292
  • [5] Assessment of pelvic floor movement using transabdominal and transperineal ultrasound
    Judith A Thompson
    Peter B O’Sullivan
    Kathy Briffa
    Patricia Neumann
    Sarah Court
    International Urogynecology Journal, 2005, 16 : 285 - 292
  • [6] Deep learning for automatic analysis of the puborectalis muscle and urogenital hiatus on transperineal ultrasound
    van den Noort, F.
    Grob, A. T.
    Slump, C. H.
    van der Vaart, C. H.
    van Stralen, M.
    INTERNATIONAL UROGYNECOLOGY JOURNAL, 2018, 29 : S39 - S40
  • [7] Automatic Quality Assessment of Pork Belly via Deep Learning and Ultrasound Imaging
    Wang, Tianshuo
    Yang, Huan
    Zhang, Chunlei
    Chao, Xiaohuan
    Liu, Mingzheng
    Chen, Jiahao
    Liu, Shuhan
    Zhou, Bo
    ANIMALS, 2024, 14 (15):
  • [8] Deep Learning for the Detection of Landmarks in Head CT Images and Automatic Quality Assessment
    Deshpande, Hrishikesh
    Saalbach, Axel
    Harder, Tim
    Young, Stewart
    Buelow, Thomas
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [9] Automatic Classification of Hepatic Cystic Echinococcosis Using Ultrasound Images and Deep Learning
    Wu, Miao
    Yan, Chuanbo
    Wang, Xiaorong
    Liu, Qian
    Liu, Zhihua
    Song, Tao
    JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (01) : 163 - 174
  • [10] A Deep Learning Systemfor Automatic Assessment of Anterior Chamber Angle in Ultrasound Biomicroscopy Images
    Wang, Wensai
    Wang, Lingxiao
    Wang, Xiaochun
    Zhou, Sheng
    Lin, Song
    Yang, Jun
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (11):