Tracking a Real Liver Using a Virtual Liver and an Experimental Evaluation with Kinect v2

被引:3
|
作者
Noborio, Hiroshi [1 ]
Watanabe, Kaoru [1 ]
Yagi, Masahiro [1 ]
Ida, Yasuhiro [1 ]
Nankaku, Shigeki [1 ]
Onishi, Katsuhiko [1 ]
Koeda, Masanao [2 ]
Kon, Masanori [2 ]
Matsui, Kosuke [2 ]
Kaibori, Masaki [2 ]
机构
[1] Osaka Electrocommun Univ, Dept Comp Sci, Osaka, Japan
[2] Kansai Med Univ, Med Sch, Osaka, Japan
关键词
Depth image; Graphics processing unit; Parallel processing; Randomized steepest descent method; Z-buffering; DEPTH-MATCHING ALGORITHM; REGISTRATION;
D O I
10.1007/978-3-319-31744-1_14
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this study, we propose a smart transcription algorithm for translation and/or rotation motions. This algorithm has two phases: calculating the differences between real and virtual 2D depth images, and searching the motion space defined by three translation and three rotation degrees of freedom based on the depth differences. One depth image is captured for a real liver using a Kinect v2 depth camera and another depth image is obtained for a virtual liver (a polyhedron in stereo-lithography (STL) format by z-buffering with a graphics processing unit). The STL data are converted from Digital Imaging and Communication in Medicine (DICOM) data, where the DICOM data are captured from a patient's liver using magnetic resonance imaging and/or a computed tomography scanner. In this study, we evaluated the motion precision of our proposed algorithm based on several experiments based using a Kinect v2 depth camera.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条
  • [21] Preliminary evaluation of the Kinect V2 sensor for its use in virtual TV sets with natural interaction
    Mendez, Roi
    Flores, Julian
    Castello, Enrique
    Arenas, Ruben
    PROCEEDINGS OF THE XVII INTERNATIONAL CONFERENCE ON HUMAN COMPUTER INTERACTION INTERACCION 2016, 2016,
  • [22] Development of a System for Quantitative Evaluation of Motor Function Using Kinect v2 Sensor
    Yoshida, Hirotaka
    Honda, Takeru
    Lee, Jongho
    Yano, Shiro
    Kakei, Shinji
    Kondo, Toshiyuki
    2016 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2016,
  • [23] Multiple Kinect V2 Calibration
    Cordova-Esparza, Diana-Margarita
    Terven, Juan R.
    Jimenez-Hernandez, Hugo
    Vazquez-Cervantes, Alberto
    Herrera-Navarro, Ana-Marcela
    Ramirez-Pedraza, Alfonso
    AUTOMATIKA, 2016, 57 (03) : 810 - 821
  • [24] Simultaneous Multiple Kinect v2 for Extended Field of View Motion Tracking
    Noonan, Philip J.
    Ma, Jiefei
    Cole, Danielle
    Howard, Jonathan
    Hallett, William A.
    Glocker, Ben
    Gunn, Roger
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [25] Multispectral Hand Recognition Using the Kinect v2 Sensor
    Samoil, S.
    Yanushkevich, S. N.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4258 - 4264
  • [26] An evaluation of 3D head pose estimation using the Microsoft Kinect v2
    Darby, John
    Sanchez, Maria B.
    Butler, Penelope B.
    Loram, Ian D.
    GAIT & POSTURE, 2016, 48 : 83 - 88
  • [27] Analysis of Microsoft Kinect V2 Performance for Interventional Fluoroscopic Procedure Staff Tracking
    Troville, J.
    Kilian-Meneghin, J.
    Rudin, S.
    Bednarek, D.
    MEDICAL PHYSICS, 2018, 45 (06) : E428 - E428
  • [28] Moving object detection with Kinect v2
    Trinh Thi Doan Pham
    Hai Thanh Nguyen
    Lee, Sungmin
    Won, Chee Sun
    2016 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2016,
  • [29] Depth completion for kinect v2 sensor
    Song, Wanbin
    Anh Vu Le
    Yun, Seokmin
    Jung, Seung-Won
    Won, Chee Sun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (03) : 4357 - 4380
  • [30] Kinect v2 infrared images correction
    Bobovsky, Zdenko
    Krys, Vaclav
    Mostyn, Vladimir
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2018, 15 (01):