Enhanced anode performance of flower-like NiO/RGO nanocomposites for lithium-ion batteries

被引:26
|
作者
Li, Xiaojia [1 ,2 ]
Fan, Linlin [2 ]
Li, Xifei [1 ,2 ]
Shan, Hui [2 ]
Chen, Chen [1 ]
Yan, Bo [2 ]
Xiong, Dongbin [1 ]
Li, Dejun [1 ]
机构
[1] Tianjin Normal Univ, Coll Phys & Mat Sci, Tianjin Int Joint Res Ctr Surface Technol Energy, Tianjin 300387, Peoples R China
[2] Xian Univ Technol, Inst Adv Electrochem Energy, Xian 710048, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Flower-like NiO; Reduced graphene oxide; Electrochemical performance; Lithium ion batteries; NIO NANOSHEETS; GRAPHENE; OXIDE; NANOPARTICLES; COMPOSITE; CAPACITY; FABRICATION; NANOTUBES; NANOFIBER; BIOMASS;
D O I
10.1016/j.matchemphys.2018.06.050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flower-like nickel oxide/reduced graphene oxide nanocomposites (NiO/RGO) are synthesized via a facile and versatile hydrothermal strategy for lithium ion battery application. The flower-like NiO with the petal thickness of 50-80 nm is wrapped homogeneously by RGO sheets. More importantly, the NiO/RGO nanocomposites exhibit a superior reversible lithium storage capacity of 702.3 mAh g(-1) after 100 cycles at a current density of 100 mA g(-1), accounting for a retention by 77.0% in comparison to that of the 2th cycle, which is higher than that of pristine NiO. The performance improvement can be ascribed to the addition of RGO, which can enhance the electrical conductivity of NiO as well as mitigate the aggregation and volume change of NiO during charge-discharge processes. The designed NiO/RGO nanocomposite may have talent application as anode material of lithium ion batteries.
引用
收藏
页码:547 / 552
页数:6
相关论文
共 50 条
  • [31] Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries
    Liang Ma
    Xian-Yinan Pei
    Dong-Chuan Mo
    Yi Heng
    Shu-Shen Lyu
    Yuan-Xiang Fu
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 5874 - 5880
  • [32] Flower-like CuS/reduced Graphene Oxide Composite as Anode Materials for Lithium Ion Batteries
    Liu, Hongdong
    Zhang, Lei
    Ruan, Haibo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (05): : 4775 - 4781
  • [33] Flower-like architecture of CoSn4 nano structure as anode in lithium ion batteries
    Javadian, Soheila
    Kakemam, Jamal
    Gharibi, Hussein
    Kashani, Hamideh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (18) : 13136 - 13149
  • [34] Hollow microspheres of NiO as anode materials for lithium-ion batteries
    Huang, X. H.
    Tu, J. P.
    Zhang, C. Q.
    Zhou, F.
    ELECTROCHIMICA ACTA, 2010, 55 (28) : 8981 - 8985
  • [35] NiO/Graphene Nanocomposite as Anode Material for Lithium-Ion Batteries
    Zhu, Yun-Guang
    Cao, Gao-Shao
    Xie, Jian
    Zhu, Tie-Jun
    Zhao, Xin-Bing
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (01) : 35 - 40
  • [36] Electrochemical Performance of Silicon/Graphene Nanocomposites Anode Materials for Lithium-ion Batteries
    Xiao S.
    Xie X.
    Xie Y.
    Liu B.
    Liu D.
    Shi Z.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2019, 47 (09): : 1327 - 1334
  • [37] CuO/rGO nanocomposite as an anode material for high-performance lithium-ion batteries
    Li, Yong
    Duan, Chao Nan
    Jiang, Zhou
    bin Zhou, Xue
    Wang, Ying
    MATERIALS RESEARCH EXPRESS, 2021, 8 (05)
  • [38] SiO2@NiO core-shell nanocomposites as high performance anode materials for lithium-ion batteries
    Wang, Yourong
    Zhou, Wei
    Zhang, Liping
    Song, Guangsen
    Cheng, Siqing
    RSC ADVANCES, 2015, 5 (77): : 63012 - 63016
  • [39] Synthesis and electrochemical performance of a spherical flower-like MoS2 /graphene anode material for lithium ion batteries
    Mou Yan-pu
    Wang Cong
    Zhan Liang
    Liu Xiang
    Wang Yan-li
    NEW CARBON MATERIALS, 2016, 31 (06) : 609 - 614
  • [40] One-pot Synthesis of Hierarchical Flower-like WS2 Microspheres as Anode Materials for Lithium-ion Batteries
    Xianghua Zhang
    Hen Tan
    Ze Wang
    Maoquan Xue
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2024, 39 : 1 - 6