On solving Lipschitz pseudocontractive operator equations

被引:0
|
作者
Abdelhakim, Ahmed A. [1 ]
Gu, Feng [2 ,3 ]
机构
[1] Assiut Univ, Fac Sci, Math Dept, Assiut, Egypt
[2] Hangzhou Normal Univ, Inst Appl Math, Hangzhou 310036, Zhejiang, Peoples R China
[3] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
关键词
Lipschitz pseudocontractions; Mann-type double sequence iteration; strong convergence; ITERATION METHOD; FIXED-POINTS;
D O I
10.1186/1029-242X-2014-314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the convergence of the Mann-type double sequence iteration process to the solution of a Lipschitz pseudocontractive operator equation on a bounded closed convex subset of arbitrary real Banach space into itself. Our results extend the result in (Moore in Comp. Math. Appl. 43: 1585-1589, 2002).
引用
收藏
页数:8
相关论文
共 50 条
  • [41] ON AN APPROXIMATE METHOD OF SOLVING QUASILINEAR OPERATOR-EQUATIONS
    FAMKIAN
    DOKLADY AKADEMII NAUK SSSR, 1980, 250 (02): : 291 - 295
  • [43] A WAVELET OPERATOR ON THE INTERVAL IN SOLVING MAXWELL'S EQUATIONS
    Ala, G.
    Francomano, E.
    Viola, F.
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2011, 27 : 133 - 140
  • [44] Solving polynomic operator equations in ordered Banach spaces
    Ruch, D
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (3-4) : 435 - 445
  • [45] ALGORITHM FOR SOLVING NONLINEAR MONOTONE OPERATOR EQUATIONS WITH APPLICATIONS
    Al-Kawaz, Rana Z.
    Abubakar, Auwal Bala
    Ibrahim, Abdulkarim Hassan
    Khammahawong, Konrawut
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2023, 2023
  • [46] ADAPTIVE GALERKIN FRAME METHODS FOR SOLVING OPERATOR EQUATIONS
    Hemmat, A. Askari
    Jamali, H.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2011, 73 (02): : 129 - 138
  • [48] Convergence of iterative methods for solving random operator equations
    Bocsan, Gheorghe
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2013, 6 (01): : 2 - 6
  • [49] A nonlocal operator method for solving partial differential equations
    Ren, Huilong
    Zhuang, Xiaoying
    Rabczuk, Timon
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 358
  • [50] Adaptive Galerkin frame methods for solving operator equations
    Hemmat, A. Askari
    Jamali, H.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2011, 73 (02): : 129 - 138