On tight 9-cycle decompositions of complete 3-uniform hypergraphs

被引:0
|
作者
Bunge, Ryan C. [1 ]
Darrow, Brian D., Jr. [2 ]
El-Zanati, Saad, I [1 ]
Hadaway, Kimberly P. [3 ]
Pryor, Megan K. [4 ]
Romer, Alexander J. [5 ]
Squires, Alexandra [6 ]
Stover, Anna C. [7 ]
机构
[1] Illinois State Univ, Normal, IL 61761 USA
[2] Columbia Univ, New York, NY USA
[3] Williams Coll, Williamstown, MA 01267 USA
[4] North Carolina State Univ, Raleigh, NC USA
[5] Millikin Univ, Decatur, IL USA
[6] Lee Univ, Cleveland, TN USA
[7] Grand Valley State Univ, Allendale, MI 49401 USA
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2021年 / 80卷
基金
美国国家科学基金会;
关键词
CYCLE DECOMPOSITIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complete 3-uniform hypergraph of order v, denoted by K-v((3)), has a set V of size v as its vertex set and the set of all 3-element subsets of V as its edge set. A 3-uniform tight 9-cycle has vertex set {v(1), v(2), v(3), v(4), v(5), v(6), v(7), v(8), v(9)} and edge set { {v(1), v(2), v(3)}, {v(2), v(3), v(4)}, {v(3), v(4), v(5)}, {v(4), v(5), v(6)}, {v(5), v(6), v(7)}, {v(6), v(7), v(8)}, {v(7), v(8), v(9)}, {v(8), v(9), v(1)}, {v(9), v(1), v(2)}}. We show there exists a tight 9-cycle decomposition of K-v((3)) if and only if v equivalent to 1 or 2 (mod 27).
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [31] 3-uniform hypergraphs without a cycle of length five
    Ergemlidze, Beka
    Gyori, Ervin
    Methuku, Abhishek
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02):
  • [32] 3-uniform hypergraphs avoiding a given odd cycle
    Gyori, Ervin
    Lemons, Nathan
    COMBINATORICA, 2012, 32 (02) : 187 - 203
  • [33] On 3-uniform hypergraphs without a cycle of a given length
    Furedi, Zoltan
    Ozkahya, Lale
    DISCRETE APPLIED MATHEMATICS, 2017, 216 : 582 - 588
  • [34] 3-uniform hypergraphs avoiding a given odd cycle
    Ervin Győri
    Nathan Lemons
    Combinatorica, 2012, 32 : 187 - 203
  • [35] On 2- and 3-factorizations of complete 3-uniform hypergraphs of order up to 9
    Adams, Peter
    El-Zanati, Saad, I
    Florido, Peter
    Turner, William
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 78 : 100 - 113
  • [36] Turan Numbers of Complete 3-Uniform Berge-Hypergraphs
    Maherani, L.
    Shahsiah, M.
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 619 - 632
  • [37] Covering 3-uniform hypergraphs by vertex-disjoint tight paths
    Han, Jie
    JOURNAL OF GRAPH THEORY, 2022, 101 (04) : 782 - 802
  • [38] LOCALIZED CODEGREE CONDITIONS FOR TIGHT HAMILTON CYCLES IN 3-UNIFORM HYPERGRAPHS
    Araujo, Pedro
    Piga, Simon
    Schacht, Mathias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 147 - 169
  • [39] Tight Hamilton cycles in cherry-quasirandom 3-uniform hypergraphs
    Aigner-Horev, Elad
    Levy, Gil
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (03): : 412 - 443
  • [40] Prime 3-Uniform Hypergraphs
    Boussairi, Abderrahim
    Chergui, Brahim
    Ille, Pierre
    Zaidi, Mohamed
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2737 - 2760