Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model

被引:8
|
作者
Sampid, Marius Galabe [1 ]
Hasim, Haslifah M. [1 ]
Dai, Hongsheng [1 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester, Essex, England
来源
PLOS ONE | 2018年 / 13卷 / 06期
关键词
INFERENCE; VOLATILITY; TAIL;
D O I
10.1371/journal.pone.0198753
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.
引用
收藏
页数:33
相关论文
共 25 条
  • [21] The Risk Contagion between Chinese and Mature Stock Markets: Evidence from a Markov-Switching Mixed-Clayton Copula Model
    Niu, Hongli
    Xu, Kunliang
    Xiong, Mengyuan
    ENTROPY, 2023, 25 (04)
  • [22] Identification of Investment Strategies for Portfolio Selection Utilizing the Markov Switching Model and Optimization Model of Portfolio Selection with Conditional Value-at-Risk
    Pekar, Juraj
    Brezina, Ivan
    Reiff, Marian
    40TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS 2022, 2022, : 262 - 267
  • [23] Estimation of Value-at-Risk using mixture Copula Model for heavy-tailed Operational Risk losses in Financial, Insurance & Climatological Data
    Guharay, Sabyasachi
    Chang, K. C.
    Xu, Jie
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 2330 - 2337
  • [24] Value-at-Risk Analysis for Measuring Stochastic Volatility of Stock Returns: Using GARCH-Based Dynamic Conditional Correlation Model
    Afzal, Fahim
    Haiying, Pan
    Afzal, Farman
    Mahmood, Asif
    Ikram, Amir
    SAGE OPEN, 2021, 11 (01):
  • [25] Forecasting value-at-risk for frontier stock market indexes using GARCH-type models and extreme value theory: model validation for dynamic models
    Vee, Dany Allan Nicholas Ng Cheong
    Gonpot, Preethee Nunkoo
    Sookia, Noor Ul Hacq
    JOURNAL OF RISK MODEL VALIDATION, 2014, 8 (04): : 47 - 67