Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model

被引:8
|
作者
Sampid, Marius Galabe [1 ]
Hasim, Haslifah M. [1 ]
Dai, Hongsheng [1 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester, Essex, England
来源
PLOS ONE | 2018年 / 13卷 / 06期
关键词
INFERENCE; VOLATILITY; TAIL;
D O I
10.1371/journal.pone.0198753
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.
引用
收藏
页数:33
相关论文
共 25 条
  • [1] Markov-switching GARCH modelling of value-at-risk
    Sajjad, Rasoul
    Coakley, Jerry
    Nankervis, John C.
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2008, 12 (03):
  • [2] Estimation of Value at Risk in Currency Exchange Rate Portfolio Using Asymmetric GJR-GARCH Copula
    Nurrahmat, Mohamad Husein
    Noviyanti, Lienda
    Bachrudin, Achmad
    STATISTICS AND ITS APPLICATIONS, 2017, 1827
  • [3] Value-at-risk forecasts by dynamic spatial panel GJR-GARCH model for international stock indices portfolio
    Wei-Guo Zhang
    Guo-Li Mo
    Fang Liu
    Yong-Jun Liu
    Soft Computing, 2018, 22 : 5279 - 5297
  • [4] Value-at-risk forecasts by dynamic spatial panel GJR-GARCH model for international stock indices portfolio
    Zhang, Wei-Guo
    Mo, Guo-Li
    Liu, Fang
    Liu, Yong-Jun
    SOFT COMPUTING, 2018, 22 (16) : 5279 - 5297
  • [5] Estimation of extreme value-at-risk: An EVT approach for quantile GARCH model
    Yi, Yanping
    Feng, Xingdong
    Huang, Zhuo
    ECONOMICS LETTERS, 2014, 124 (03) : 378 - 381
  • [6] Forecasting Value-at-Risk with Novel Wavelet Based Garch-EVT Model
    Altun, Emrah
    Tatlidil, Huseyin
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2016, 29 (03): : 599 - 614
  • [7] FORECASTING DEPENDENT TAIL VALUE-AT-RISK BY ARMA-GJR-GARCH-COPULA METHOD AND ITS APPLICATION IN ENERGY RISK
    Josaphat, Bony Parulian
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2023, 29 (03) : 382 - 407
  • [8] Forecasting Time-varying Value-at-Risk and Expected Shortfall Dependence: A Markov-switching Generalized Autoregressive Score Copula Approach
    Makatjane, Katleho
    AUSTRIAN JOURNAL OF STATISTICS, 2024, 53 (02) : 81 - 98
  • [9] Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations
    Ardia, David
    ECONOMETRICS JOURNAL, 2009, 12 (01): : 105 - 126
  • [10] Portfolio value-at-risk by Bayesian conditional EVT-copula models: taking an Asian index portfolio for example
    Liao, Guenter
    Pan, Tzu-Hui
    Chang, Lung-Fu
    Huang, Shian-Chang
    Wu, Cheng-Feng
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2012, 15 (2-3): : 345 - 367