Multiple frailty model for clustered interval-censored data with frailty selection

被引:3
|
作者
Pan, Chun [1 ]
Cai, Bo [2 ]
Wang, Lianming [3 ]
机构
[1] Novartis Pharmaceut, E Hanover, NJ USA
[2] Univ South Carolina, Dept Epidemiol & Biostat, Columbia, SC USA
[3] Univ South Carolina, Dept Stat, Columbia, SC USA
关键词
Frailty; heterogeneity test; interval-censored; proportional hazards model; semiparametric regression; FAILURE TIME DATA; PROPORTIONAL HAZARDS MODEL; SURVIVAL-DATA; REGRESSION-ANALYSIS; SEMIPARAMETRIC MODEL; COX MODEL; LIKELIHOOD; SPLINE; SIZE;
D O I
10.1177/0962280215576987
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Interval-censored time-to-event data often occur in studies of diseases where the symptoms of interest are not directly observable but require lab examinations for detection. Furthermore, the independence assumption among observations may not be valid if they are from clusters. Some methods have been developed for analysing clustered interval-censored data with a shared frailty to account for overall heterogeneity. In this paper, we propose a multiple frailty proportional hazards model, where we not only account for the baseline heterogeneity and effect variation across clusters for predictors, but also quantify the probabilities of the existence of such frailties. This proposed model will be especially useful for analysing multi-center randomised clinical trials for HIV, infections or progression-free survival in oncology studies.
引用
收藏
页码:1308 / 1322
页数:15
相关论文
共 50 条
  • [1] Frailty model approach for the clustered interval-censored data with informative censoring
    Kim, Jinheum
    Kim, Youn Nam
    Kim, Seong W.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (01) : 156 - 165
  • [2] Frailty model approach for the clustered interval-censored data with informative censoring
    Jinheum Kim
    Youn Nam Kim
    Seong W. Kim
    [J]. Journal of the Korean Statistical Society, 2016, 45 : 156 - 165
  • [3] Semi-parametric frailty model for clustered interval-censored data
    Yavuz, Aysun Cetinyurek
    Lambert, Philippe
    [J]. STATISTICAL MODELLING, 2016, 16 (05) : 360 - 391
  • [4] Analyzing Clustered and Interval-Censored Data based on the Semiparametric Frailty Model
    Kim, Jinheum
    Kim, Youn Nam
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (05) : 707 - 718
  • [5] Normal frailty probit model for clustered interval-censored failure time data
    Wu, Haifeng
    Wang, Lianming
    [J]. BIOMETRICAL JOURNAL, 2019, 61 (04) : 827 - 840
  • [6] A Gamma-frailty proportional hazards model for bivariate interval-censored data
    Gamage, Prabhashi W. Withana
    McMahan, Christopher S.
    Wang, Lianming
    Tu, Wanzhu
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 354 - 366
  • [7] A FRAILTY MODEL APPROACH FOR REGRESSION ANALYSIS OF BIVARIATE INTERVAL-CENSORED SURVIVAL DATA
    Wen, Chi-Chung
    Chen, Yi-Hau
    [J]. STATISTICA SINICA, 2013, 23 (01) : 383 - 408
  • [8] Gamma frailty model for linkage analysis with application to interval-censored migraine data
    Jonker, M. A.
    Bhulai, S.
    Boomsma, D. I.
    Ligthart, R. S. L.
    Posthuma, D.
    Van Der Vaart, A. W.
    [J]. BIOSTATISTICS, 2009, 10 (01) : 187 - 200
  • [9] Analysis of clustered interval-censored data using a class of semiparametric partly linear frailty transformation models
    Lee, Chun Yin
    Wong, Kin Yau
    Lam, K. F.
    Xu, Jinfeng
    [J]. BIOMETRICS, 2022, 78 (01) : 165 - 178
  • [10] A multiple imputation approach for clustered interval-censored survival data
    Lam, K. F.
    Xu, Ying
    Cheung, Tak-Lun
    [J]. STATISTICS IN MEDICINE, 2010, 29 (06) : 680 - 693