A multiple imputation approach for clustered interval-censored survival data
被引:21
|
作者:
Lam, K. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Lam, K. F.
[1
]
Xu, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Singapore Clin Res Inst, Singapore, SingaporeUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Xu, Ying
[2
]
Cheung, Tak-Lun
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Special Adm Reg, Hosp Author, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Cheung, Tak-Lun
[3
]
机构:
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Singapore Clin Res Inst, Singapore, Singapore
[3] Hong Kong Special Adm Reg, Hosp Author, Hong Kong, Hong Kong, Peoples R China
EM algorithm;
frailty;
interval-censored;
multiple imputation;
proportional hazards model;
FAILURE TIME DATA;
COX REGRESSION;
FRAILTY MODELS;
LIKELIHOOD;
HAZARDS;
D O I:
10.1002/sim.3835
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Multivariate interval-censored failure time data arise commonly in many studies of epidemiology and biomedicine. Analysis of these type of data is more challenging than the right-censored data. We propose a simple multiple imputation strategy to recover the order of occurrences based on the interval-censored event times using a conditional predictive distribution function derived from a parametric gamma random effects model. By imputing the interval-censored failure times, the estimation of the regression and dependence parameters in the context of a gamma frailty proportional hazards model using the well-developed EM algorithm is made possible. A robust estimator for the covariance matrix is suggested to adjust for the possible misspecification of the parametric baseline hazard function. The finite sample properties of the proposed method are investigated via simulation. The performance of the proposed method is highly satisfactory, whereas the computation burden is minimal. The proposed method is also applied to the diabetic retinopathy study (DRS) data for illustration purpose and the estimates are compared with those based on other existing methods for bivariate grouped survival data. Copyright (C) 2010 John Wiley & Sons, Ltd.
机构:
Washington Univ, Sch Med, Div Biostat, Campus Box 8067,660 S Euclid Ave, St Louis, MO 63110 USAWashington Univ, Sch Med, Div Biostat, Campus Box 8067,660 S Euclid Ave, St Louis, MO 63110 USA
Chen, Ling
Sun, Jianguo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Stat, 146 Middlebush Hall, Columbia, MO 65211 USAWashington Univ, Sch Med, Div Biostat, Campus Box 8067,660 S Euclid Ave, St Louis, MO 63110 USA
Sun, Jianguo
Xiong, Chengjie
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Sch Med, Div Biostat, Campus Box 8067,660 S Euclid Ave, St Louis, MO 63110 USAWashington Univ, Sch Med, Div Biostat, Campus Box 8067,660 S Euclid Ave, St Louis, MO 63110 USA
机构:
Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, Singapore
Ma, Xiangmei
Xiang, Liming
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, Singapore
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
Lam, K. F.
Wong, Kin-Yau
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USAUniv Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China