HoCHC: A Refutationally Complete and Semantically Invariant System of Higher-order Logic Modulo Theories

被引:6
|
作者
Ong, C-H Luke [1 ]
Wagner, Dominik [1 ]
机构
[1] Univ Oxford, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
RESOLUTION;
D O I
10.1109/lics.2019.8785784
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a simple resolution proof system for higher-order constrained Horn clauses (HoCHC)-a system of higher-order logic modulo theories-and prove its soundness and refutational completeness w.r.t. both standard and Henkin semantics. As corollaries, we obtain the compactness theorem and semi-decidability of HoCHC for semi-decidable background theories, and we prove that HoCHC satisfies a canonical model property. Moreover a variant of the well-known translation from higher-order to 1st-order logic is shown to be sound and complete for HoCHC in both semantics. We illustrate how to transfer decidability results for (fragments of) 1st-order logic modulo theories to our higher-order setting, using as example the Bernays-Schonfinkel-Ramsey fragment of HoCHC modulo a restricted form of Linear Integer Arithmetic.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Invariant Higher-Order Variational Problems
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (02) : 413 - 458
  • [22] A HIGHER-ORDER INVARIANT OF DIFFERENTIAL MANIFOLDS
    FREDRICKS, GA
    GILKEY, PB
    PARKER, PE
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 315 (01) : 373 - 388
  • [23] HIGHER-ORDER FIBONACCI SEQUENCES MODULO-M
    CHANG, DK
    FIBONACCI QUARTERLY, 1986, 24 (02): : 138 - 139
  • [24] ON HIGHER-ORDER ELASTODYNAMIC ROD THEORIES
    VASUDEVA, RY
    BHASKARA, RK
    RAO, PG
    AVADHANI, BVS
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1986, 80 (06): : 1777 - 1781
  • [25] A Dilemma for Higher-Order Theories of Consciousness
    Isabel Gois
    Philosophia, 2010, 38 : 143 - 156
  • [26] On the Relationship between Higher-Order Recursion Schemes and Higher-Order Fixpoint Logic
    Kobayashi, Naoki
    Lozes, Etienne
    Bruse, Florian
    ACM SIGPLAN NOTICES, 2017, 52 (01) : 246 - 259
  • [27] On ambitious higher-order theories of consciousness
    Gottlieb, Joseph
    PHILOSOPHICAL PSYCHOLOGY, 2020, 33 (03) : 421 - 441
  • [28] ON HIGHER-ORDER BEAM AND PLATE THEORIES
    LEVINSON, M
    MECHANICS RESEARCH COMMUNICATIONS, 1987, 14 (5-6) : 421 - 424
  • [29] HIGHER-ORDER ELASTODYNAMIC PLATE THEORIES
    BACHE, TC
    HEGEMIER, GA
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1974, 41 (02): : 423 - 428
  • [30] THE MERITS OF HIGHER-ORDER THOUGHT THEORIES
    Coleman, Sam
    TRANS-FORM-ACAO, 2018, 41 : 31 - 48