Feasible partition problem in reverse convex and convex mixed-integer programming

被引:1
|
作者
Obuchowska, Wieslawa T. [1 ]
机构
[1] E Carolina Univ, Dept Math, Greenville, NC 27858 USA
关键词
Integer programming; Infeasibility; Reverse convex and convex constraints; Feasible partition and maximal consistent partition problem; CONCAVE; CONSTRAINTS; SYSTEMS; INFEASIBILITY; UNBOUNDEDNESS; ALGORITHM; THEOREM;
D O I
10.1016/j.ejor.2013.10.041
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we consider the consistent partition problem in reverse convex and convex mixed-integer programming. In particular we will show that for the considered classes of convex functions, both integer and relaxed systems can be partitioned into two disjoint subsystems, each of which is consistent and defines an unbounded region. The polynomial time algorithm to generate the partition will be proposed and the algorithm for a maximal partition will also be provided. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 137
页数:9
相关论文
共 50 条
  • [41] Shapes and recession cones in mixed-integer convex representability
    Ilias Zadik
    Miles Lubin
    Juan Pablo Vielma
    [J]. Mathematical Programming, 2024, 204 : 739 - 752
  • [42] Convex approximations for a class of mixed-integer recourse models
    Maarten H. Van der Vlerk
    [J]. Annals of Operations Research, 2010, 177 : 139 - 150
  • [43] Mixed-Integer Convex Model for VAr Expansion Planning
    Lopez, Julio Cesar
    Mantovani, J. R. S.
    Contreras Sanz, Javier
    [J]. 2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [44] Shapes and recession cones in mixed-integer convex representability
    Zadik, Ilias
    Lubin, Miles
    Vielma, Juan Pablo
    [J]. MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 739 - 752
  • [45] Sparse convex optimization toolkit: a mixed-integer framework
    Olama, Alireza
    Camponogara, Eduardo
    Kronqvist, Jan
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (06): : 1269 - 1295
  • [46] Solving the minimum convex partition of point sets with integer programming
    Sapucaia, Allan
    Rezende, Pedro J. de
    Souza, Cid C. de
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 99
  • [47] Bivium as a Mixed-Integer Linear Programming Problem
    Borghoff, Julia
    Knudsen, Lars R.
    Stolpe, Mathias
    [J]. CRYPTOGRAPHY AND CODING, PROCEEDINGS, 2009, 5921 : 133 - 152
  • [48] Length-Constrained Mixed-Integer Convex Programming-based Generation of Tensegrity Structures
    Khafizov, Ramil
    Savin, Sergei
    [J]. 2021 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2021), 2021, : 125 - 131
  • [49] Convex mixed-integer nonlinear programs derived from generalized disjunctive programming using cones
    David E. Bernal Neira
    Ignacio E. Grossmann
    [J]. Computational Optimization and Applications, 2024, 88 : 251 - 312
  • [50] A MIXED-INTEGER PROGRAMMING APPROACH TO THE CLUSTERING PROBLEM
    FREED, N
    GLOVER, F
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1983, 12 (05) : 595 - 607