Feasible partition problem in reverse convex and convex mixed-integer programming

被引:1
|
作者
Obuchowska, Wieslawa T. [1 ]
机构
[1] E Carolina Univ, Dept Math, Greenville, NC 27858 USA
关键词
Integer programming; Infeasibility; Reverse convex and convex constraints; Feasible partition and maximal consistent partition problem; CONCAVE; CONSTRAINTS; SYSTEMS; INFEASIBILITY; UNBOUNDEDNESS; ALGORITHM; THEOREM;
D O I
10.1016/j.ejor.2013.10.041
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we consider the consistent partition problem in reverse convex and convex mixed-integer programming. In particular we will show that for the considered classes of convex functions, both integer and relaxed systems can be partitioned into two disjoint subsystems, each of which is consistent and defines an unbounded region. The polynomial time algorithm to generate the partition will be proposed and the algorithm for a maximal partition will also be provided. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 137
页数:9
相关论文
共 50 条
  • [1] Feasibility in reverse convex mixed-integer programming
    Obuchowska, Wieslawa T.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 218 (01) : 58 - 67
  • [2] A FEASIBLE ACTIVE SET METHOD WITH REOPTIMIZATION FOR CONVEX QUADRATIC MIXED-INTEGER PROGRAMMING
    Buchheim, Christoph
    de Santis, Marianna
    Lucidi, Stefano
    Rinaldi, Francesco
    Trieu, Long
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (03) : 1695 - 1714
  • [3] Extended Formulations in Mixed-Integer Convex Programming
    Lubin, Miles
    Yamangil, Emre
    Bent, Russell
    Vielma, Juan Pablo
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 102 - 113
  • [4] Approximate Multiparametric Mixed-Integer Convex Programming
    Malyuta, Danylo
    Acikmese, Behcet
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (01): : 157 - 162
  • [5] Unbounded convex sets for non-convex mixed-integer quadratic programming
    Burer, Samuel
    Letchford, Adam N.
    [J]. MATHEMATICAL PROGRAMMING, 2014, 143 (1-2) : 231 - 256
  • [6] Unbounded convex sets for non-convex mixed-integer quadratic programming
    Samuel Burer
    Adam N. Letchford
    [J]. Mathematical Programming, 2014, 143 : 231 - 256
  • [7] Mixed-Integer Convex Representability
    Lubin, Miles
    Zadik, Ilias
    Vielma, Juan Pablo
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2017, 2017, 10328 : 392 - 404
  • [8] Mixed-Integer Convex Representability
    Lubin, Miles
    Vielma, Juan Pablo
    Zadik, Ilias
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (01) : 720 - 749
  • [9] Duality for mixed-integer convex minimization
    Michel Baes
    Timm Oertel
    Robert Weismantel
    [J]. Mathematical Programming, 2016, 158 : 547 - 564
  • [10] Duality for mixed-integer convex minimization
    Baes, Michel
    Oertel, Timm
    Weismantel, Robert
    [J]. MATHEMATICAL PROGRAMMING, 2016, 158 (1-2) : 547 - 564