Colouring semirandom graphs

被引:4
|
作者
Coja-Oghlan, Amin [1 ]
机构
[1] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
来源
COMBINATORICS PROBABILITY & COMPUTING | 2007年 / 16卷 / 04期
关键词
D O I
10.1017/S0963548306007917
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study semirandom k-colourable graphs made up as follows. Partition the vertex set V = {1,..., n} randomly into k classes V-1,..., V-k of equal size and include each V-i-V-j-edge with probability p independently (1 <= i < j <= k) to obtain a graph G(0). Then, an adversary may add further V-i-V-j-edges (i = j) to G(0), thereby completing the semirandom graph G = G(n,p,k)*. We show that if np >= max{(1 + epsilon)k ln n, C(0)k(2)} for a certain constant C-0 > 0 and an arbitrarily small but constant e > 0, an optimal colouring of G* can be found in polynomial time with high probability. Furthermore, if np >= C-0 max {k ln n, k(2)}, a k-colouring of G(n,p,k)(*) can be computed in polynomial expected time. Moreover, an optimal colouring of G* can be computed in expected polynomial time if k <= ln(1/3) n and np >= C(0)k ln n. By contrast, it is NP-hard to k-colour G(n,p,k)(*) w.h.p. if np <= (1/2 - epsilon)k ln(n/ k).
引用
收藏
页码:515 / 552
页数:38
相关论文
共 50 条
  • [1] Coloring semirandom graphs optimally
    Coja-Oghlan, A
    [J]. AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 383 - 395
  • [2] On the tractability of coloring semirandom graphs
    Boettcher, Julia
    Vilenchik, Dan
    [J]. INFORMATION PROCESSING LETTERS, 2008, 108 (03) : 143 - 149
  • [3] Colouring graphs with bounded generalized colouring number
    Zhu, Xuding
    [J]. DISCRETE MATHEMATICS, 2009, 309 (18) : 5562 - 5568
  • [4] Colouring of distance graphs
    Voigt, M
    [J]. ARS COMBINATORIA, 1999, 52 : 3 - 12
  • [5] L(2, 1) Colouring and Radio Colouring of Some Graphs and its Parametrized Graphs
    Rani, A. Vimala
    [J]. IAENG International Journal of Computer Science, 2024, 51 (11) : 1740 - 1749
  • [6] Colouring exact distance graphs of chordal graphs
    Quiroz, Daniel A.
    [J]. DISCRETE MATHEMATICS, 2020, 343 (05)
  • [7] Game list colouring of graphs
    Borowiecki, M.
    Sidorowicz, E.
    Tuza, Zs.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [8] Colouring random regular graphs
    Shi, Lingsheng
    Wormald, Nicholas
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (03): : 459 - 494
  • [9] Colouring AT-Free Graphs
    Kratsch, Dieter
    Mueller, Haiko
    [J]. ALGORITHMS - ESA 2012, 2012, 7501 : 707 - 718
  • [10] The Colouring Number of Infinite Graphs
    Bowler, Nathan
    Carmesin, Johannes
    Komjath, Peter
    Reiher, Christian
    [J]. COMBINATORICA, 2019, 39 (06) : 1225 - 1235