COASTAL EROSION MAPPING THROUGH INTERGRATION OF SAR AND LANDSAT TM IMAGERY

被引:3
|
作者
Ge, Linlin [1 ]
Li, Xiaojing [1 ]
Wu, Fan [1 ]
Turner, Ian L. [2 ]
机构
[1] Univ New S Wales, Sch Civil & Environm Engn, Geosci & Earth Observing Syst Grp GEOS, Sydney, NSW, Australia
[2] Univ New S Wales, Sch Civil & Environm Engn, Water Res Lab, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
shoreline extraction; coastal erosion mapping; SAR imagery; Landsat TM; sub-pixel technique; linear spectral unmixing;
D O I
10.1109/IGARSS.2013.6723269
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is important to monitor long-term coastal erosion in countries such as Australia given the majority of our population live in coastal regions. However, ground-based surveys are labour-intensive and involve significant cost when large spatial areas need to monitored. This paper presents a complementary, cost-effective approach for mapping the eroded shoreline, through integrating Landsat multispectral (MS) imagery data and synthetic aperture radar (SAR) imagery data. This integration method overcomes the problem of data shortage associated with using a single data source. Moreover, it can extract the instant land-water interface at sub-pixel resolution. Because the extracted land-water boundaries are dynamic, a tidal model has to be applied to define the high water line. Wavelet transform and linear spectral unmixing are the two major algorithms used for extracting the land-water interface. Several inundated areas are identified at the selected study area along the coast of East Gippsland Basin, Victoria, Australia. Naturally occurring erosion is believed to be the major factor for these inundated areas. Theoretically the extracted shorelines for defining erosion can reach 1m - 2m resolution approximately.
引用
收藏
页码:2266 / 2269
页数:4
相关论文
共 50 条
  • [31] Lichen mapping in the summer range of the George River caribou herd using Landsat TM imagery
    Théau, J
    Duguay, CR
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2004, 30 (06) : 867 - 881
  • [32] Mapping grass communities based on multi-temporal Landsat TM imagery and environmental variables
    Zeng, Yuandi
    Liu, Yanfang
    Liu, Yaolin
    de Leeuw, Jan
    [J]. GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752
  • [33] Authomatic radiometric correction of Landsat TM imagery through pseudoinvariant areas and modtran modelling
    More, G.
    Pons, X.
    Cristbal, J.
    Pesquer, L.
    Gonzalez, O.
    [J]. REVISTA DE TELEDETECCION, 2012, (37): : 67 - 73
  • [34] An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data
    Wang, Y
    Colby, JD
    Mulcahy, KA
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (18) : 3681 - 3696
  • [35] Determination of Land Cover using Landsat TM Imagery
    Genc, Levent
    Sacan, Melis
    Turhan, Hakan
    Asar, Burak
    [J]. JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2010, 16 (03): : 213 - 224
  • [36] Water Quality Retrieval from Landsat TM Imagery
    Kulkarni, Arun
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2011, 6
  • [37] Evaluating the information content of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features
    Metternicht, GI
    Zinck, JA
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1998, 53 (03) : 143 - 153
  • [38] Landsat TM and SAR images fusion by multiwavelet transform
    Li, ST
    Wang, YN
    [J]. MULTISPECTRAL AND HYPERSPECTRAL IMAGE ACQUISITION AND PROCESSING, 2001, 4548 : 146 - 150
  • [39] Comparison of ERS SAR and Landsat TM forest classification
    Manninen, AT
    Häme, TP
    Lohi, AI
    [J]. SECOND INTERNATIONAL WORKSHOP ON RETRIEVAL OF BIO- & GEO-PHYSICAL PARAMETERS FROM SAR DATA FOR LAND APPLICATIONS, 1998, 441 : 347 - 354
  • [40] Applications of Landsat-5 TM imagery in assessing and mapping water quality in Reelfoot Lake, Tennessee
    Wang, F.
    Han, L.
    Kung, H. -T.
    van Arsdale, R. B.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (23-24) : 5269 - 5283