Convergence analysis of a collapsed Gibbs sampler for Bayesian vector autoregressions

被引:5
|
作者
Ekvall, Karl Oskar [1 ]
Jones, Galin L. [2 ]
机构
[1] Karolinska Inst, Inst Environm Med, Div Biostat, Nobels Vag 13, S-17177 Stockholm, Sweden
[2] Univ Minnesota, Sch Stat, 313 Ford Hall,224 Church St SE, Minneapolis, MN 55455 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 01期
基金
奥地利科学基金会;
关键词
Convergence complexity analysis; geometric ergodicity; Markov chain Monte Carlo; Bayesian vector autoregression; Gibbs sampler; SPECTRAL VARIANCE ESTIMATORS; CHAIN MONTE-CARLO;
D O I
10.1214/21-EJS1800
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the convergence properties of a collapsed Gibbs sampler for Bayesian vector autoregressions with predictors, or exogenous variables. The Markov chain generated by our algorithm is shown to be geometrically ergodic regardless of whether the number of observations in the underlying vector autoregression is small or large in comparison to the order and dimension of it. In a convergence complexity analysis, we also give conditions for when the geometric ergodicity is asymptotically stable as the number of observations tends to infinity. Specifically, the geometric convergence rate is shown to be bounded away from unity asymptotically, either almost surely or with probability tending to one, depending on what is assumed about the data generating process. This result is one of the first of its kind for practically relevant Markov chain Monte Carlo algorithms. Our convergence results hold under close to arbitrary model misspecification.
引用
收藏
页码:691 / 721
页数:31
相关论文
共 50 条
  • [41] A bayesian model and gibbs sampler for hyperspectral imaging
    Rodriguez-Yam, GA
    Davis, RA
    Scharf, LL
    SAM2002: IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, 2002, : 105 - 109
  • [42] Stability of the Gibbs sampler for Bayesian hierarchical models
    Papaspiliopoulos, Omiros
    Roberts, Gareth
    ANNALS OF STATISTICS, 2008, 36 (01): : 95 - 117
  • [43] Convergence properties of the Gibbs sampler for perturbations of Gaussians
    Amit, Y
    ANNALS OF STATISTICS, 1996, 24 (01): : 122 - 140
  • [44] Convergence rate of gibbs sampler and its application
    Kaican Li
    Zhi Geng
    Science in China Series A: Mathematics, 2005, 48 : 1430 - 1439
  • [45] Rate of Convergence of the Gibbs Sampler in the Gaussian Case
    Alain Galli
    Haiyu Gao
    Mathematical Geology, 2001, 33 : 653 - 677
  • [46] A Bayesian analysis of reliability in accelerated life tests using Gibbs sampler
    Mattos, NMC
    Migon, HD
    COMPUTATIONAL STATISTICS, 2001, 16 (02) : 299 - 312
  • [47] A Bayesian Analysis of Reliability in Accelerated Life Tests Using Gibbs Sampler
    Néli Maria Costa Mattos
    Hélio Santos dos Migon
    Computational Statistics, 2001, 16 : 299 - 312
  • [48] Bayesian bootstrap analysis of doubly censored data using Gibbs sampler
    Kim, Y
    Lee, J
    Kim, J
    STATISTICA SINICA, 2005, 15 (04) : 969 - 980
  • [49] Approximate Gibbs sampler for Bayesian Huberized lasso
    Kawakami, Jun
    Hashimoto, Shintaro
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 128 - 162
  • [50] Sparse Bayesian vector autoregressions in huge dimensions
    Kastner, Gregor
    Huber, Florian
    JOURNAL OF FORECASTING, 2020, 39 (07) : 1142 - 1165