On Z2Z2[u3]-Additive Cyclic and Complementary Dual Codes

被引:2
|
作者
Hou, Xiaotong [1 ]
Meng, Xiangrui [1 ]
Gao, Jian [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255000, Peoples R China
基金
中国国家自然科学基金;
关键词
Additives; Liquid crystal displays; Generators; Linear codes; Licenses; Structural rings; Standards; Additive cyclic codes; asymptotically good codes; additive complementary dual codes; binary gray images;
D O I
10.1109/ACCESS.2021.3076303
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aydogdu et al. studied the standard forms of generator and parity-check matrices of Z(2) Z(2)[u(3)]-additive codes, and presented generators of Z(2) Z(2)[u(3)]-additive cyclic codes (Finite Fields Appl. 48: 241-260, 2017). In this paper, we investigate some other useful properties of Z(2) Z(2)[u(3)]-additive codes, including asymptotically good Z(2)Z(2)[u(3)]-additive cyclic codes and Z(2) Z(2)[u(3)]-additive complementary dual codes. The present paper can be viewed as a necessary complementary part of Aydogdu's work.
引用
收藏
页码:65914 / 65924
页数:11
相关论文
共 50 条
  • [41] Cyclic codes over Z4 + uZ4 + u2Z4
    Ozen, Mehmet
    Ozzaim, Nazmiye Tugba
    Aydin, Nuh
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1235 - 1247
  • [42] Additive Codes over Z2 x Z4
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Dougherty, Steven T.
    [J]. 2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [43] On Z2Z4-additive polycyclic codes and their Gray images
    Wu, Rongsheng
    Shi, Minjia
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (11) : 2551 - 2562
  • [44] The Structure of Z2Z2s-Additive Codes: Bounds on the Minimum Distance
    Aydogdu, Ismail
    Siap, Irfan
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (06): : 2271 - 2278
  • [45] Quantum codes from Z2Z2[u]/⟨u4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle $$\end{document}-cyclic codes
    Soumak Biswas
    Maheshanand Bhaintwal
    [J]. Designs, Codes and Cryptography, 2022, 90 (2) : 343 - 366
  • [46] On the structure of cyclic codes over the ring Z2s[u]/⟨uk⟩
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Kumar, Pratyush
    Sriboonchitta, Songsak
    [J]. DISCRETE MATHEMATICS, 2018, 341 (08) : 2243 - 2275
  • [47] Classification of self-dual cyclic codes over the chain ring Zp[u]/⟨u3⟩
    Kim, Boran
    Lee, Yoonjin
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (10) : 2247 - 2273
  • [48] Quantum codes from cyclic codes over the ring Fp [u]/ ⟨u3 - u⟩
    Bag, Tushar
    Upadhyay, Ashish K.
    Ashraf, Mohammad
    Mohammad, Ghulam
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (07)
  • [49] ON REVERSIBLE Z2-DOUBLE CYCLIC CODES
    Patanker, Nupur
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (02) : 443 - 460
  • [50] On double cyclic codes over Z2
    Aydogdu, Ismail
    [J]. AIMS MATHEMATICS, 2024, 9 (05): : 11076 - 11091