Thermoplasmonic-Assisted Cyclic Cleavage Amplification for Self-Validating Plasmonic Detection of SARS-CoV-2

被引:57
|
作者
Qiu, Guangyu [1 ,2 ]
Gai, Zhibo [3 ,4 ]
Saleh, Lanja [5 ]
Tang, Jiukai [1 ,2 ]
Gui, Ting [3 ]
Kullak-Ublick, Gerd A. [4 ,6 ]
Wang, Jing [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Inst Environm Engn, CH-8093 Zurich, Switzerland
[2] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Adv Analyt Technol, CH-8600 Dubendorf, Switzerland
[3] Shandong Univ Tradit Chinese Med, Expt Ctr, Jinan 250355, Peoples R China
[4] Univ Zurich, Univ Hosp Zurich, Dept Clin Pharmacol & Toxicol, CH-8091 Zurich, Switzerland
[5] Univ Zurich, Univ Hosp Zurich, Inst Clin Chem, CH-8091 Zurich, Switzerland
[6] Novartis Pharmaceut, Global Drug Dev, CMO & Patient Safety, Mechanist Safety, CH-4002 Basel, Switzerland
基金
瑞士国家科学基金会;
关键词
thermoplasmonics; SARS-CoV-2; COVID-19; plasmonics; biosensor; cyclic cleavage amplification; DNA; COMPLEX;
D O I
10.1021/acsnano.1c00957
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The coronavirus disease 2019 (COVID-19) has penetrated every populated patch of the globe and sows destruction in our daily life. Reliable and sensitive virus sensing systems are therefore of vital importance for timely infection detection and transmission prevention. Here we present a thermoplasmonic-assisted dual-mode transducing (TP-DMT) concept, where an amplification-free-based direct viral RNA detection and an amplification-based cyclic fluorescence probe cleavage (CFPC) detection collaborated to provide a sensitive and self-validating plasmonic nanoplatform for quantifying trace amounts of SARS-CoV-2 within 30 min. In the CFPC detection, endonuclease IV recognized the synthetic abasic site and cleaved the fluorescent probes in the hybridized duplex. The nanoscale thermoplasmonic heating dehybridized the shortened fluorescent probes and facilitated the cyclical binding-cleavage-dissociation (BCD) process, which could deliver a highly sensitive amplification-based response. This TP-DMT approach was successfully validated by testing clinical COVID-19 patient samples, which indicated its potential applications in fast clinical infection screening and real-time environmental monitoring.
引用
收藏
页码:7536 / 7546
页数:11
相关论文
共 50 条
  • [21] Gold nanoparticle based plasmonic sensing for the detection of SARS-CoV-2 nucleocapsid proteins
    Behrouzi, Kamyar
    Lin, Liwei
    BIOSENSORS & BIOELECTRONICS, 2022, 195
  • [22] Multiple ligation-Assisted recombinase polymerase amplification for highly sensitive and selective colorimetric detection of SARS-CoV-2
    Asa, Tasnima Alam
    Kumar, Pradeep
    Lee, Jaehyeon
    Seo, Young Jun
    TALANTA, 2023, 252
  • [23] Photonic Crystal Fiber Plasmonic Biosensor for SARS-CoV-2 Particle Quantification and Detection
    Mollah, Md. Aslam
    Abdulrazak, Lway Faisal
    Tabassum, Tahsin
    Rahman, Md. Sohanur
    Ibrahim, Sobhy M.
    Ahmed, Kawsar
    Bui, Francis M.
    Chen, Li
    PLASMONICS, 2025,
  • [24] SARS-CoV-2 RNA Detection with Duplex-Specific Nuclease Signal Amplification
    Liu, Meiqing
    Li, Haoran
    Jia, Yanwei
    Mak, Pui-In
    Martins, Rui P.
    MICROMACHINES, 2021, 12 (02)
  • [25] Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2
    Jon Arizti-Sanz
    Catherine A. Freije
    Alexandra C. Stanton
    Brittany A. Petros
    Chloe K. Boehm
    Sameed Siddiqui
    Bennett M. Shaw
    Gordon Adams
    Tinna-Solveig F. Kosoko-Thoroddsen
    Molly E. Kemball
    Jessica N. Uwanibe
    Fehintola V. Ajogbasile
    Philomena E. Eromon
    Robin Gross
    Loni Wronka
    Katie Caviness
    Lisa E. Hensley
    Nicholas H. Bergman
    Bronwyn L. MacInnis
    Christian T. Happi
    Jacob E. Lemieux
    Pardis C. Sabeti
    Cameron Myhrvold
    Nature Communications, 11
  • [26] Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2
    Arizti-Sanz, Jon
    Freije, Catherine A.
    Stanton, Alexandra C.
    Petros, Brittany A.
    Boehm, Chloe K.
    Siddiqui, Sameed
    Shaw, Bennett M.
    Adams, Gordon
    Kosoko-Thoroddsen, Tinna-Solveig F.
    Kemball, Molly E.
    Uwanibe, Jessica N.
    Ajogbasile, Fehintola V.
    Eromon, Philomena E.
    Gross, Robin
    Wronka, Loni
    Caviness, Katie
    Hensley, Lisa E.
    Bergman, Nicholas H.
    MacInnis, Bronwyn L.
    Happi, Christian T.
    Lemieux, Jacob E.
    Sabeti, Pardis C.
    Myhrvold, Cameron
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [27] Rapid Detection of SARS-CoV-2 Virus via Novel Direct Amplification Methods
    Knox, C.
    Hook, B.
    Brecklin, D.
    McDonnell, T.
    Mook, J.
    Pennington, R.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (11): : S30 - S30
  • [28] Amplification Free Detection of SARS-CoV-2 Using Multi-Valent Binding
    Roychoudhury, Appan
    Allen, Rosalind J.
    Curk, Tine
    Farrell, James
    McAllister, Gina
    Templeton, Kate
    Bachmann, Till T.
    ACS SENSORS, 2022, 7 (12) : 3692 - 3699
  • [29] Rapid detection of SARS-CoV-2 with a mobile device based on pulse controlled amplification
    Staniszewski, Filip
    Schilder, Alexandra
    Osinkina, Lidiya
    Westenthanner, Maximilian
    Kataeva, Nadezhda
    Posch, Barbara
    Gillitschka, Yasmin
    Stoecker, Kilian
    Silberreis, Kim
    Coen, Sabrina
    Cannas, Angela
    Matusali, Giulia
    Schmidleithner, Christina
    Stehr, Joachim
    Buersgens, Federico
    Peham, Johannes R.
    BIOSENSORS & BIOELECTRONICS, 2024, 263
  • [30] Detection of Large Genomic RNA via DNAzyme-Mediated RNA Cleavage and Rolling Circle Amplification: SARS-CoV-2 as a Model
    Gu, Jimmy
    Mathai, Amal
    Nurmi, Connor
    White, Dawn
    Panesar, Gurpreet
    Yamamura, Deborah
    Balion, Cynthia
    Gubbay, Jonathan
    Mossman, Karen
    Capretta, Alfredo
    Salena, Bruno J.
    Soleymani, Leyla
    Filipe, Carlos D. M.
    Brennan, John D.
    Li, Yingfu
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (27)