Monocular Visual-Inertial SLAM with Camera-IMU Extrinsic Automatic Calibration and Online Estimation

被引:2
|
作者
Pan, Linhao [1 ]
Tian, Fuqing [1 ]
Ying, Wenjian [1 ]
She, Bo [1 ]
机构
[1] Naval Univ Engn, Dept Weapon, Wuhan 430033, Hubei, Peoples R China
来源
INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT IV | 2019年 / 11743卷
关键词
VI-SLAM; Sensor fusion; Initialization; Extrinsic calibration; State estimation; INITIALIZATION; VISION;
D O I
10.1007/978-3-030-27538-9_61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An approach of automatic calibration and online estimation for camera-IMU extrinsic parameters in monocular visual-inertial SLAM (Simultaneous Localization and Mapping) is proposed in this paper. Firstly, the camera-IMU extrinsic rotation is estimated with the hand-eye calibration as well as the gyroscope bias. Secondly, the scale factor, gravity and camera-IMU extrinsic translation are approximated without considering the accelerometer bias. All these parameters are refined with the gravitational magnitude and accelerometer bias taken into account at last. Furthermore, the camera-IMU extrinsic parameters are put into state vectors for online estimation. Experiment result with the EuRoC dataset shows that the algorithm automatically calibrates and estimates the camera-IMU extrinsic parameter with the extrinsic orientation and translation's error within 0.5 degrees and 0.02 m separately, which contributes to the rapid use and accuracy of the VI-SLAM system.
引用
收藏
页码:706 / 721
页数:16
相关论文
共 50 条
  • [41] Enhanced Online Calibration and Initialization of Visual-Inertial SLAM System Leveraging the Structure Information
    Yan, Dayu
    Li, Tuan
    Shi, Chuang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [42] A dynamic and static combined camera-IMU extrinsic calibration method based on continuous-time trajectory estimation
    Ouyang, Wenlan
    Lin, Wanbiao
    Sun, Lei
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2025, 186
  • [43] Automatic Extrinsic Calibration of LIDAR and Monocular Camera Images
    Vaida, Albert-Szabolcs
    Nedevschi, Sergiu
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 117 - 124
  • [44] Experimental Evaluation of Monocular Visual-Inertial SLAM Methods for Freight Railways
    Li, Ruoying
    Lou, Yidong
    Song, Weiwei
    Wang, Yusheng
    Tu, Zhiyong
    IEEE SENSORS JOURNAL, 2023, 23 (19) : 23282 - 23293
  • [45] A Consistent Parallel Estimation Framework for Visual-Inertial SLAM
    Huai, Zheng
    Huang, Guoquan
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 3734 - 3755
  • [46] Robust monocular visual-inertial SLAM based on the improved SuperPoint network
    Yu, Hongshan
    Guo, Feng
    Guo, Linfeng
    Wang, Jialong
    Fu, Qiang
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (01): : 116 - 126
  • [47] Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality
    Jinyu L.
    Bangbang Y.
    Danpeng C.
    Nan W.
    Guofeng Z.
    Hujun B.
    Virtual Reality and Intelligent Hardware, 2019, 1 (04): : 386 - 410
  • [48] Relocalization, Global Optimization and Map Merging for Monocular Visual-Inertial SLAM
    Qin, Tong
    Li, Peiliang
    Shen, Shaojie
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 1197 - 1204
  • [49] Adaptive optimization online IMU self-calibration method for visual-inertial navigation systems
    Wang, Zihui
    Cheng, Xianghong
    MEASUREMENT, 2021, 180
  • [50] Deep Depth Estimation from Visual-Inertial SLAM
    Sartipi, Kourosh
    Do, Tien
    Ke, Tong
    Vuong, Khiem
    Roumeliotis, Stergios, I
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10038 - 10045