Development and validation of a mortality risk model for pediatric sepsis

被引:17
|
作者
Chen, Mengshi [1 ,2 ]
Lu, Xiulan [1 ]
Hu, Li [2 ,3 ]
Liu, Pingping [1 ]
Zhao, Wenjiao [1 ]
Yan, Haipeng [1 ]
Tang, Liang [1 ]
Zhu, Yimin [1 ]
Xiao, Zhenghui [1 ]
Chen, Lizhang [2 ]
Tan, Hongzhuan [2 ]
机构
[1] Hunan Childrens Hosp, Ziyuan RD, Changsha, Hunan, Peoples R China
[2] Cent South Univ, Sch Publ Hlth, Dept Epidemiol & Hlth Stat, Changsha, Hunan, Peoples R China
[3] Beijing Ctr Dis Prevent & Control, Beijing, Peoples R China
关键词
mortality; model; pediatric; sepsis; C-REACTIVE PROTEIN; SEPTIC SHOCK; PROCALCITONIN; INFECTION; SCORE; EPIDEMIOLOGY; PROGRESSION; CHILDREN; OUTCOMES;
D O I
10.1097/MD.0000000000006923
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Pediatric sepsis is a burdensome public health problem. Assessing the mortality risk of pediatric sepsis patients, offering effective treatment guidance, and improving prognosis to reduce mortality rates, are crucial. We extracted data derived from electronic medical records of pediatric sepsis patients that were collected during the first 24 hours after admission to the pediatric intensive care unit (PICU) of the Hunan Children's hospital from January 2012 to June 2014. A total of 788 children were randomly divided into a training (592, 75%) and validation group (196, 25%). The risk factors for mortality among these patients were identified by conducting multivariate logistic regression in the training group. Based on the established logistic regression equation, the logit probabilities for all patients (in both groups) were calculated to verify the model's internal and external validities. According to the training group, 6 variables (brain natriuretic peptide, albumin, total bilirubin, D-dimer, lactate levels, and mechanical ventilation in 24 hours) were included in the final logistic regression model. The areas under the curves of the model were 0.854 (0.826, 0.881) and 0.844 (0.816, 0.873) in the training and validation groups, respectively. The Mortality Risk Model for Pediatric Sepsis we established in this study showed acceptable accuracy to predict the mortality risk in pediatric sepsis patients.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Nomogram to predict risk of neonatal mortality among preterm neonates admitted with sepsis at University of Gondar Comprehensive Specialized Hospital: risk prediction model development and validation
    Tesfie, Tigabu Kidie
    Anlay, Degefaye Zelalem
    Abie, Birhanu
    Chekol, Yazachew Moges
    Gelaw, Negalgn Byadgie
    Tebeje, Tsion Mulat
    Animut, Yaregal
    BMC PREGNANCY AND CHILDBIRTH, 2024, 24 (01)
  • [32] Nomogram to predict risk of neonatal mortality among preterm neonates admitted with sepsis at University of Gondar Comprehensive Specialized Hospital: risk prediction model development and validation
    Tigabu Kidie Tesfie
    Degefaye Zelalem Anlay
    Birhanu Abie
    Yazachew Moges Chekol
    Negalgn Byadgie Gelaw
    Tsion Mulat Tebeje
    Yaregal Animut
    BMC Pregnancy and Childbirth, 24
  • [33] Diagnostic Validation of the Updated Pediatric Sepsis Biomarker Risk II for Acute Kidney Injury Prediction Model in Pediatric Septic Shock
    Stanski, Natalja L.
    Zhang, Bin
    Cvijanovich, Natalie Z.
    Fitzgerald, Julie C.
    Bigham, Michael T.
    Jain, Parag N.
    Schwarz, Adam J.
    Lutfi, Riad
    Allen, Geoffrey L.
    Thomas, Neal J.
    Baines, Torrey
    Haileselassie, Bereketeab
    Weiss, Scott L.
    Atreya, Mihir R.
    Lautz, Andrew J.
    Zingarelli, Basilia
    Standage, Stephen W.
    Kaplan, Jennifer
    Goldstein, Stuart L.
    PEDIATRIC CRITICAL CARE MEDICINE, 2024, 25 (11) : 1005 - 1016
  • [34] The Temporal Version of the Pediatric Sepsis Biomarker Risk Model
    Wong, Hector R.
    Weiss, Scott L.
    Giuliano, John S., Jr.
    Wainwright, Mark S.
    Cvijanovich, Natalie Z.
    Thomas, Neal J.
    Allen, Geoffrey L.
    Anas, Nick
    Bigham, Michael T.
    Hall, Mark
    Freishtat, Robert J.
    Sen, Anita
    Meyer, Keith
    Checchia, Paul A.
    Shanley, Thomas P.
    Nowak, Jeffrey
    Quasney, Michael
    Chopra, Arun
    Fitzgerald, Julie C.
    Gedeit, Rainer
    Banschbach, Sharon
    Beckman, Eileen
    Harmon, Kelli
    Lahni, Patrick
    Lindsell, Christopher J.
    PLOS ONE, 2014, 9 (03):
  • [35] Development and validation of a novel blending machine learning model for hospital mortality prediction in ICU patients with Sepsis
    Zeng, Zhixuan
    Yao, Shuo
    Zheng, Jianfei
    Gong, Xun
    BIODATA MINING, 2021, 14 (01)
  • [36] Development and validation of a novel blending machine learning model for hospital mortality prediction in ICU patients with Sepsis
    Zhixuan Zeng
    Shuo Yao
    Jianfei Zheng
    Xun Gong
    BioData Mining, 14
  • [37] Risk Factors for Mortality in Pediatric Postsurgical versus Medical Severe Sepsis
    Thakkar, Rajan K.
    Weiss, Scott L.
    Fitzgerald, Julie C.
    Keele, Luke
    Thomas, Neal J.
    Nadkarni, Vinay M.
    Muszynski, Jennifer A.
    Hall, Mark W.
    Fontela, P.
    Tucci, M.
    Dumistrascu, M.
    Skippen, P.
    Krahn, G.
    Bezares, E.
    Puig, G.
    Puig-Ramos, A.
    Garcia, R.
    Villar, M.
    Bigham, M.
    Polanski, T.
    Latifi, S.
    Giebner, D.
    Anthony, H.
    Hume, J.
    Galster, A.
    Linnerud, L.
    Sanders, R.
    Hefley, G.
    Madden, K.
    Thompson, A.
    Shein, S.
    Gertz, S.
    Han, Y.
    Williams, T.
    Hughes-Schalk, A.
    Chandler, H.
    Orioles, A.
    Zielinski, E.
    Doucette, A.
    Zebuhr, C.
    Wilson, T.
    Dimitriades, C.
    Ascani, J.
    Layburn, S.
    Valley, S.
    Markowitz, B.
    Terry, J.
    Morzov, R.
    Mcinnes, A.
    McArthur, J.
    JOURNAL OF SURGICAL RESEARCH, 2019, 242 : 100 - 110
  • [38] Development and validation of a predictive model for in-hospital mortality in patients with sepsis-associated liver injury
    Liu, Yousheng
    Sun, Run
    Jiang, Haiyan
    Liang, Guiwen
    Huang, Zhongwei
    Qi, Lei
    Lu, Juying
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (18)
  • [39] Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study
    Wang, Yiping
    Gao, Zhihong
    Zhang, Yang
    Lu, Zhongqiu
    Sun, Fangyuan
    INTERNAL AND EMERGENCY MEDICINE, 2024, : 909 - 918
  • [40] The Importance of Mortality Risk Assessment: Validation of the Pediatric Index of Mortality 3 Score
    Wolfler, Andrea
    Osello, Raffaella
    Gualino, Jenny
    Calderini, Edoardo
    Vigna, Gianluca
    Santuz, Pierantonio
    Amigoni, Angela
    Savron, Fabio
    Caramelli, Fabio
    Rossetti, Emanuele
    Cecchetti, Corrado
    Corbari, Maurizio
    Piastra, Marco
    Testa, Raffaele
    Coffaro, Giancarlo
    Stancanelli, Giusi
    Gitto, Eloisa
    Amato, Roberta
    Prinelli, Federica
    Salvo, Ida
    PEDIATRIC CRITICAL CARE MEDICINE, 2016, 17 (03) : 251 - 256