Numerical conformal mapping methods for simply and doubly connected regions

被引:9
|
作者
Delillo, TK [1 ]
Pfaltzgraff, JA
机构
[1] Wichita State Univ, Dept Math & Stat, Wichita, KS 67260 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1998年 / 19卷 / 01期
关键词
numerical conformal mapping; doubly connected regions; Fornberg's method; compact operators; conjugate gradient method;
D O I
10.1137/S1064827596303545
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Methods are presented and analyzed for approximating the conformal map from the interior (exterior) of the disk to the interior (exterior) of a smooth, simple closed curve and from an annulus to a bounded, doubly connected region with smooth boundaries. The methods are Newton-like methods for computing the boundary correspondences and conformal moduli similar to Fornberg's method for the interior of the disk. We show that the linear systems are discretizations of the identity plus a compact operator and, hence, that the conjugate gradient method converges superlinearly.
引用
收藏
页码:155 / 171
页数:17
相关论文
共 50 条
  • [41] A numerical method for the conformable mapping of doubly connected areas
    Zarankiewicz, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1934, 14 : 97 - 104
  • [42] Conformal mapping of doubly connected domains: an application to the modelling of an electrostatic micromotor
    Costamagna, E.
    Di Barba, P.
    Savini, A.
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2009, 3 (05) : 334 - 342
  • [43] Conformal Invariants in Simply Connected Domains
    Mohamed M. S. Nasser
    Matti Vuorinen
    Computational Methods and Function Theory, 2020, 20 : 747 - 775
  • [44] Conformal Invariants in Simply Connected Domains
    Nasser, Mohamed M. S.
    Vuorinen, Matti
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (3-4) : 747 - 775
  • [45] MODERN LOOK AT CONFORMAL MAPPING INCLUDING MULTIPLY CONNECTED REGIONS
    IVES, DC
    AIAA JOURNAL, 1976, 14 (08) : 1006 - 1011
  • [46] CONFORMAL MAPPING OF MULTIPLY CONNECTED DOMAINS EXTERIOR TO THIN REGIONS
    HOMENTCOVSCHI, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1982, 33 (04): : 503 - 512
  • [47] Conformal Mapping of Unbounded Multiply Connected Regions onto Canonical Slit Regions
    Yunus, Arif A. M.
    Murid, Ali H. M.
    Nasser, Mohamed M. S.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [48] Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions
    Yunus, A. A. M.
    Murid, A. H. M.
    Nasser, M. M. S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2162):
  • [49] CONFORMAL-METRICAL THEORY OF DOUBLY CONNECTED REGIONS AND GENERALISED BLASCHKES PRODUCT
    TAMRAZOV, PM
    DOKLADY AKADEMII NAUK SSSR, 1965, 161 (02): : 308 - &
  • [50] UNSTEADY THERMAL-STRESS PROBLEMS IN A DOUBLY CONNECTED DOMAIN BY CONFORMAL MAPPING
    TAKEUTI, Y
    YAMADA, K
    ACTA MECHANICA, 1980, 35 (3-4) : 275 - 283