Regression diagnostic under model misspecification

被引:0
|
作者
Chien, Li-Chu
Tsou, Tsung-Shan [1 ]
机构
[1] Natl Cent Univ, Inst Stat, Inst Syst Biol & Bioinformat, Jhongli, Taiwan
[2] Natl Hlth Res Inst, Div Biostat & Bioinformat, Taipei, Taiwan
关键词
influential diagnostic; robust likelihood; robust normal regression; DFBETAS; DFFITS; cook's distance;
D O I
10.1080/02664760701235014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose two novel diagnostic measures for the detection of influential observations for regression parameters in linear regression. Traditional diagnostic statistics focus on the effect of deletion of data points either on parameter estimates, or on predicted values. A data point is regarded as influential by the new methods if its inclusion determines a significantly different likelihood function for the parameter of interest. The concerned likelihood function is asymptotically valid for practically all underlying distributions whose second moments exist.
引用
收藏
页码:563 / 575
页数:13
相关论文
共 50 条
  • [41] Excess risk estimation under multistage model misspecification
    Piegorsch, WW
    Nitcheva, DK
    West, RW
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (05) : 423 - 430
  • [42] Dynamic misspecification in nonparametric cointegrating regression
    Kasparis, Ioannis
    Phillips, Peter C. B.
    [J]. JOURNAL OF ECONOMETRICS, 2012, 168 (02) : 270 - 284
  • [43] A note on the likelihood-ratio statistic under model misspecification
    Viraswami, K
    Reid, N
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 161 - 168
  • [44] An information approach to regularization parameter selection under model misspecification
    Urmanov, AM
    Gribok, AV
    Hines, JW
    Uhrig, RE
    [J]. INVERSE PROBLEMS, 2002, 18 (05) : 1207 - 1228
  • [45] Propensity score weighting under limited overlap and model misspecification
    Zhou, Yunji
    Matsouaka, Roland A.
    Thomas, Laine
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (12) : 3721 - 3756
  • [46] Testing Inference in Inflated Beta Regressions under Model Misspecification
    Souza, Tatiene C.
    Pereira, Tarciana L.
    Cribari-Neto, Francisco
    Lima, Veronica M. C.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (02) : 625 - 642
  • [47] Metrics for Bayesian Optimal Experiment Design Under Model Misspecification
    Catanach, Tommie A.
    Das, Niladri
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023,
  • [48] Learning under Model Misspecification: Applications to Variational and Ensemble methods
    Masegosa, Andres R.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [49] MULTIPLE-GENERATOR ERRORS ARE UNAVOIDABLE UNDER MODEL MISSPECIFICATION
    JEWETT, DL
    ZHANG, Z
    [J]. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1995, 95 (02): : 135 - 142
  • [50] Performance of Person-Fit Statistics Under Model Misspecification
    Hong, Seong Eun
    Monroe, Scott
    Falk, Carl F.
    [J]. JOURNAL OF EDUCATIONAL MEASUREMENT, 2020, 57 (03) : 423 - 442