A bijection phi from a group G to itself is called an antisymmetric mapping if for all g, h is an element of G with g not equal h: g phi(h)not equal h phi(g). It has been conjectured by J. A. Gallian and M. D. Mullin [3] that every non-abelian group possesses an antisymmetric mapping. The aim of this note is to supply a proof of this conjecture in the case of finite non-abelian solvable groups. Constructions of antisymmetric mappings are given explicitly for a number of solvable groups. Principally, these constructions allow a recursive construction of an antisymmetric mapping for every non-abelian solvable group.
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, IsraelUniv Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
Herzog, Marcel
Kaplan, Gil
论文数: 0引用数: 0
h-index: 0
机构:
Acad Coll Tel Aviv Yaffo, Sch Comp Sci, IL-64044 Tel Aviv, IsraelUniv Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
Kaplan, Gil
Lev, Arieh
论文数: 0引用数: 0
h-index: 0
机构:Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
机构:
Adelphi Univ, Dept Math & Comp Sci, One South Ave, Garden City, NY 11010 USAAdelphi Univ, Dept Math & Comp Sci, One South Ave, Garden City, NY 11010 USA
Foguel, Tuval
Sizemore, Nick
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, Dept Math, 1400 Stadium Rd, Gainesville, FL 32611 USAAdelphi Univ, Dept Math & Comp Sci, One South Ave, Garden City, NY 11010 USA
Sizemore, Nick
ADVANCES IN GROUP THEORY AND APPLICATIONS,
2018,
6
: 55
-
67
机构:
Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R ChinaHainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
Wang, Wanlin
Guo, Pengfei
论文数: 0引用数: 0
h-index: 0
机构:
Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R ChinaHainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China