Radial basis functions and FDM for solving fractional diffusion-wave equation

被引:0
|
作者
Avazzadeh, Z. [1 ]
Hosseini, V. R. [1 ]
Chen, W. [1 ]
机构
[1] Hohai Univ, Coll Mech & Mat, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
关键词
Diffusion-wave equation; fractional derivative; radial basis functions; finite difference scheme; NUMERICAL-SOLUTION; APPROXIMATION; INTERPOLATION; SUBDIFFUSION;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we apply the radial basis functions for solving the time fractional diffusion-wave equation defined by Caputo sense for (1 < alpha <= 2). The problem is discretized in the time direction based on finite difference scheme and is continuously approximated by using the radial basis functions in the space direction which achieves the semi-discrete solution. Numerical results show the accuracy and efficiency of the presented method.
引用
收藏
页码:205 / 212
页数:8
相关论文
共 50 条
  • [21] A compact difference scheme for the fractional diffusion-wave equation
    Du, R.
    Cao, W. R.
    Sun, Z. Z.
    [J]. APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) : 2998 - 3007
  • [22] The fundamental solution of a diffusion-wave equation of fractional order
    Pskhu, A. V.
    [J]. IZVESTIYA MATHEMATICS, 2009, 73 (02) : 351 - 392
  • [23] Asymptotic properties of solutions of the fractional diffusion-wave equation
    Kochubei, Anatoly N.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) : 881 - 896
  • [24] Asymptotic properties of solutions of the fractional diffusion-wave equation
    Anatoly N. Kochubei
    [J]. Fractional Calculus and Applied Analysis, 2014, 17 : 881 - 896
  • [25] OSCILLATION OF TIME FRACTIONAL VECTOR DIFFUSION-WAVE EQUATION WITH FRACTIONAL DAMPING
    Ramesh, R.
    Harikrishnan, S.
    Nieto, J. J.
    Prakash, P.
    [J]. OPUSCULA MATHEMATICA, 2020, 40 (02) : 291 - 305
  • [26] CONTINUITY WITH RESPECT TO FRACTIONAL ORDER OF THE TIME FRACTIONAL DIFFUSION-WAVE EQUATION
    Nguyen Huy Tuan
    O'Regan, Donal
    Tran Bao Ngoc
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 773 - 793
  • [27] Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method
    Jafari, Hossein
    Dehghan, Mehdi
    Sayevand, Khosro
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (04) : 1115 - 1126
  • [28] A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations
    Esen, A.
    Tasbozan, O.
    Ucar, Y.
    Yagmurlu, N. M.
    [J]. TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) : 181 - 193
  • [29] Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation
    Jincheng Ren
    Xiaonian Long
    Shipeng Mao
    Jiwei Zhang
    [J]. Journal of Scientific Computing, 2017, 72 : 917 - 935
  • [30] Stabilization of Solutions to the Cauchy Problem for Fractional Diffusion-Wave Equation
    Pskhu A.V.
    [J]. Journal of Mathematical Sciences, 2020, 250 (5) : 800 - 810