Comparative analysis of radioholographic methods of processing radio occultation data

被引:48
|
作者
Gorbunov, ME
Gurvich, AS
Kornblueh, L
机构
[1] Russian Acad Sci, Inst Atmospher Phys, Moscow 109017, Russia
[2] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
关键词
D O I
10.1029/1999RS002247
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Two methods for the determination of refraction angle profiles from radio occultation measurements in multipath areas are analyzed and compared: (1) the radio-optic method based on the analysis of the local spatial spectra of the measured wave field and (2) the back propagation of the received wave field to a single-ray region. The basic limitations of the radio-optic method are (1) the restriction of the resolution of refraction angle profiles due to the uncertainty relation of refraction angle and impact parameter and (2) diffractive effects in subcaustic areas, where the spatial spectra cannot be interpreted in terms of geometric optical rays. The basic limitation of the back propagation method is related to ray and caustic structures, which may not contain single-ray areas. It is shown that strong refraction reduces the uncertainties of refraction angle and impact parameter. On the other hand, strong refraction or superrefraction is responsible for complicated caustic structures that cannot be resolved by the back propagation technique. The two methods are thus complementary to each other and can be combined for processing lower tropospheric occultation data. This analysis is corroborated by numerical. simulations based on global fields of atmospheric variables from analyses of the European Centre for Medium Range Weather Forecast.
引用
收藏
页码:1025 / 1034
页数:10
相关论文
共 50 条
  • [31] Mars Express radio-occultation data: A novel analysis approach
    Grandin, M.
    Blelly, P. -L.
    Witasse, O.
    Marchaudon, A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (12) : 10,621 - 10,632
  • [32] Validation and data quality of CHAMP radio occultation data
    Marquardt, C
    Schöllhammer, K
    Beyerle, G
    Schmidt, T
    Wickert, J
    Reigber, C
    [J]. FIRST CHAMP MISSION RESULTS FOR GRAVITY, MAGNETIC AND ATMOSPHERIC STUDIES, 2003, : 384 - 396
  • [33] Observation of wave structures in the upper atmosphere by means of radio holographic analysis of the radio occultation data
    Igarashi, K
    Pavelyev, A
    Hocke, K
    Pavelyev, D
    Wickert, J
    [J]. ADVANCES IN REMOTE SENSING OF THE MIDDLE AND UPPER ATMOSPHERE AND THE IONOSPHERE, 2001, 27 (6/7): : 1321 - 1326
  • [34] Comparative Analysis of Geochemical Data Processing Methods for Allocation of Anomalies and Background
    Esmaeiloghli, S.
    Tabatabaei, S. H.
    [J]. GEOCHEMISTRY INTERNATIONAL, 2020, 58 (04) : 472 - 485
  • [35] Comparative Analysis of Geochemical Data Processing Methods for Allocation of Anomalies and Background
    S. Esmaeiloghli
    S. H. Tabatabaei
    [J]. Geochemistry International, 2020, 58 : 472 - 485
  • [36] The CHAMP atmospheric processing system for radio occultation measurements
    Schmidt, T
    Wickert, J
    Beyerle, G
    König, R
    Galas, R
    Reigber, C
    [J]. EARTH OBSERVATION WITH CHAMP: RESULTS FROM THREE YEARS ORBIT, 2005, : 597 - 602
  • [37] Radio-holographic analysis of Microlab-1 radio occultation data in the lower troposphere
    Gorbunov, ME
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D12)
  • [38] Assimilation of GPS radio occultation data at DWD
    Anlauf, H.
    Pingel, D.
    Rhodin, A.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (06) : 1105 - 1113
  • [39] Validation of operational GRAS radio occultation data
    von Engeln, A.
    Healy, S.
    Marquardt, C.
    Andres, Y.
    Sancho, F.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [40] GNSS Radio Occultation Data in the AWS Cloud
    Leroy, S. S.
    Mcvey, A. E.
    Leidner, S. M.
    Zhang, H.
    Gleisner, H.
    [J]. EARTH AND SPACE SCIENCE, 2024, 11 (02)