Coherent virtual absorption of elastodynamic waves

被引:40
|
作者
Trainiti, G. [1 ]
Ra'di, Y. [2 ,3 ]
Ruzzene, M. [1 ,4 ]
Alu, A. [2 ,3 ,5 ,6 ]
机构
[1] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[3] CUNY, Adv Sci Res Ctr, Photon Initiat, New York, NY 10031 USA
[4] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[5] CUNY, Grad Ctr, Phys Program, New York, NY 10016 USA
[6] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
来源
SCIENCE ADVANCES | 2019年 / 5卷 / 08期
基金
美国国家科学基金会;
关键词
EXCITATION; CAVITY;
D O I
10.1126/sciadv.aaw3255
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Absorbers suppress reflection and scattering of an incident wave by dissipating its energy into heat. As material absorption goes to zero, the energy impinging on an object is necessarily transmitted or scattered away. Specific forms of temporal modulation of the impinging signal can suppress wave scattering and transmission in the transient regime, mimicking the response of a perfect absorber without relying on material loss. This virtual absorption can store energy with large efficiency in a lossless material and then release it on demand. Here, we extend this concept to elastodynamics and experimentally show that longitudinal motion can be perfectly absorbed using a lossless elastic cavity. This energy is then released symmetrically or asymmetrically by controlling the relative phase of the impinging signals. Our work opens previously unexplored pathways for elastodynamic wave control and energy storage, which may be translated to other phononic and photonic systems of technological relevance.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Numerical recipes for elastodynamic virtual element methods with explicit time integration
    Park, Kyoungsoo
    Chi, Heng
    Paulino, Glaucio H.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (01) : 1 - 31
  • [33] Revisiting Piezoelectric Sensor Calibration Methods Using Elastodynamic Body Waves
    Rui Wu
    Paul A. Selvadurai
    Chaojian Chen
    Omid Moradian
    [J]. Journal of Nondestructive Evaluation, 2021, 40
  • [34] Application of a general expression for the group velocity vector of elastodynamic guided waves
    Hakoda, Christopher
    Lissenden, Cliff J.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2020, 469 (469)
  • [35] Revisiting Piezoelectric Sensor Calibration Methods Using Elastodynamic Body Waves
    Wu, Rui
    Selvadurai, Paul A.
    Chen, Chaojian
    Moradian, Omid
    [J]. JOURNAL OF NONDESTRUCTIVE EVALUATION, 2021, 40 (03)
  • [36] Peri-elastodynamic: Peridynamic simulation method for guided waves in materials
    Rahman, Fahim Md Mushfiqur
    Banerjee, Sourav
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 219
  • [37] Elastodynamic Analysis of Underground Structural Failures Induced by Seismic Body Waves
    Uenishi, Koji
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2012, 79 (03):
  • [38] Blocking of traveling waves and energy localization due to the elastodynamic diffraction by a crack
    Glushkov, EV
    Glushkova, NV
    Golub, MV
    [J]. ACOUSTICAL PHYSICS, 2006, 52 (03) : 259 - 269
  • [39] Scattering and Diffraction of Elastodynamic Waves in a Concentric Cylindrical Phantom for MR Elastography
    Schwartz, Benjamin L.
    Yin, Ziying
    Yasar, Temel K.
    Liu, Yifei
    Khan, Altaf A.
    Ye, Allen Q.
    Royston, Thomas J.
    Magin, Richard L.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (11) : 2308 - 2316
  • [40] Blocking of traveling waves and energy localization due to the elastodynamic diffraction by a crack
    E. V. Glushkov
    N. V. Glushkova
    M. V. Golub
    [J]. Acoustical Physics, 2006, 52 : 259 - 269