NEURAL DECODING USING A NONLINEAR GENERATIVE MODEL FOR BRAIN-COMPUTER INTERFACE

被引:0
|
作者
Dantas, Henrique [1 ]
Kellis, Spencer [2 ]
Mathews, V. John [3 ]
Greger, Bradley [4 ]
机构
[1] Univ Fed Pernambuco, Recife, PE, Brazil
[2] CALTECH, Biol & Biol Engn Div, Pasadena, CA 91125 USA
[3] Univ Utah, Dept Elect & Comp Engn, Pasadena 84109, CA USA
[4] Arizona State Univ, Sch Sch Biologicool Biol & Hlth, Tempe, AZ 85287 USA
关键词
Neural decoding; Brain-Computer Interface; Nonlinear Kalman Filter; MOVEMENTS; CORTEX;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Kalman filters have been used to decode neural signals and estimate hand kinematics in many studies. However, most prior work assumes a linear system model, an assumption that is almost certainly violated by neural systems. In this paper, we show that adding nonlinearities to the decoding algorithm improves the accuracy of tracking hand movements using neural signal acquired via a 32-channel micro-electrocorticographic (mu ECoG) grid placed over the arm and hand representations in the motor cortex. Experimental comparisons indicate that a Kalman filter with a fifth order polynomial generative model relating the hand kinematics signals to the neural signals improved the mean-square tracking performance in the hand movements over a conventional Kalman filter employing a linear system model. This finding is in accord with the current neurophysiological understanding of the decoded signals.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] The Berlin Brain-Computer Interface
    Blankertz, Benjamin
    Tangermann, Michael
    Popescu, Florin
    Krauledat, Matthias
    Fazli, Siamac
    Donaczy, Marton
    Curio, Gabriel
    Mueller, Klaus Robert
    COMPUTATIONAL INTELLIGENCE: RESEARCH FRONTIERS, 2008, 5050 : 79 - +
  • [42] Brain-Computer Interface of Motor Imagery and Emotion using Multiple Recurrent Neural Networks
    Sury, Dimas A.
    Djamal, Esmeralda C.
    2021 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATICS ENGINEERING (IC2IE 2021), 2021, : 56 - 61
  • [43] Construction of an electroencephalogram-based brain-computer interface using an artificial neural network
    Liu, XC
    Hibino, S
    Hanai, T
    Imanishi, T
    Shirataki, T
    Ogawa, T
    Honda, H
    Kobayashi, T
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (09) : 1879 - 1886
  • [44] A brain-computer typing interface using finger movements
    Shah, Nishal P.
    Willsey, Matthew S.
    Hahn, Nick
    Kamdar, Foram
    Avansino, Donald T.
    Hochberg, Leigh R.
    Shenoy, Krishna V.
    Henderson, Jaimie M.
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [45] A brain-computer interface using electrocorticographic signals in humans
    Leuthardt, Eric C.
    Schalk, Gerwin
    Wolpaw, Jonathan R.
    Ojemann, Jeffrey G.
    Moran, Daniel W.
    JOURNAL OF NEURAL ENGINEERING, 2004, 1 (02) : 63 - 71
  • [46] Brain-Computer Interface Design using Alpha Wave
    Zhao, Hai-bin
    Wang, Hong
    Liu, Chong
    Li, Chun-sheng
    ICMIT 2009: MECHATRONICS AND INFORMATION TECHNOLOGY, 2010, 7500
  • [47] A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface
    Luo, Jiahui
    Xue, Ning
    Chen, Jiamin
    BIOSENSORS-BASEL, 2022, 12 (12):
  • [48] Development of Portable Brain-Computer Interface Using NIRS
    Kazuki, Yanagisawa
    Tsunashima, Hitoshi
    2014 UKACC INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2014, : 702 - 707
  • [49] Age and gender classification using brain-computer interface
    Kaur, Barjinder
    Singh, Dinesh
    Roy, Partha Pratim
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10): : 5887 - 5900
  • [50] Brain-Computer Interface using Directional Auditory Perception
    Koike, Yuto
    Hiroi, Yuichi
    Itoh, Yuta
    Rekimoto, Jun
    PROCEEDINGS OF THE 4TH AUGMENTED HUMANS INTERNATIONAL CONFERENCE 2023, AHS2023, 2023, : 342 - 345