NEURAL DECODING USING A NONLINEAR GENERATIVE MODEL FOR BRAIN-COMPUTER INTERFACE

被引:0
|
作者
Dantas, Henrique [1 ]
Kellis, Spencer [2 ]
Mathews, V. John [3 ]
Greger, Bradley [4 ]
机构
[1] Univ Fed Pernambuco, Recife, PE, Brazil
[2] CALTECH, Biol & Biol Engn Div, Pasadena, CA 91125 USA
[3] Univ Utah, Dept Elect & Comp Engn, Pasadena 84109, CA USA
[4] Arizona State Univ, Sch Sch Biologicool Biol & Hlth, Tempe, AZ 85287 USA
关键词
Neural decoding; Brain-Computer Interface; Nonlinear Kalman Filter; MOVEMENTS; CORTEX;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Kalman filters have been used to decode neural signals and estimate hand kinematics in many studies. However, most prior work assumes a linear system model, an assumption that is almost certainly violated by neural systems. In this paper, we show that adding nonlinearities to the decoding algorithm improves the accuracy of tracking hand movements using neural signal acquired via a 32-channel micro-electrocorticographic (mu ECoG) grid placed over the arm and hand representations in the motor cortex. Experimental comparisons indicate that a Kalman filter with a fifth order polynomial generative model relating the hand kinematics signals to the neural signals improved the mean-square tracking performance in the hand movements over a conventional Kalman filter employing a linear system model. This finding is in accord with the current neurophysiological understanding of the decoded signals.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Neural Decoding for Intracortical Brain-Computer Interfaces
    Dong, Yuanrui
    Wang, Shirong
    Huang, Qiang
    Berg, Rune W.
    Li, Guanghui
    He, Jiping
    CYBORG AND BIONIC SYSTEMS, 2023, 4
  • [2] A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller
    Martens, S. M. M.
    Leiva, J. M.
    JOURNAL OF NEURAL ENGINEERING, 2010, 7 (02)
  • [3] Meeting brain-computer interface user performance expectations using a deep neural network decoding framework
    Schwemmer, Michael A.
    Skomrock, Nicholas D.
    Sederberg, Per B.
    Ting, Jordyn E.
    Sharma, Gaurav
    Bockbrader, Marcia A.
    Friedenberg, David A.
    NATURE MEDICINE, 2018, 24 (11) : 1669 - +
  • [4] fMRI Brain Decoding and Its Applications in Brain-Computer Interface: A Survey
    Du, Bing
    Cheng, Xiaomu
    Duan, Yiping
    Ning, Huansheng
    BRAIN SCIENCES, 2022, 12 (02)
  • [5] Brain-computer interface paradigms and neural coding
    Tai, Pengrui
    Ding, Peng
    Wang, Fan
    Gong, Anmin
    Li, Tianwen
    Zhao, Lei
    Su, Lei
    Fu, Yunfa
    FRONTIERS IN NEUROSCIENCE, 2024, 17
  • [6] Application of Neural Network to Brain-Computer Interface
    Hsu, Wei-Yen
    Chiang, I-Jen
    2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 163 - 168
  • [7] Neural mechanisms of brain-computer interface control
    Halder, S.
    Agorastos, D.
    Veit, R.
    Hammer, E. M.
    Lee, S.
    Varkuti, B.
    Bogdan, M.
    Rosenstiel, W.
    Birbaumer, N.
    Kuebler, A.
    NEUROIMAGE, 2011, 55 (04) : 1779 - 1790
  • [8] Decoding the Debate: A Comparative Study of Brain-Computer Interface and Neurofeedback
    Mohammad H. Mahrooz
    Farrokh Fattahzadeh
    Shahriar Gharibzadeh
    Applied Psychophysiology and Biofeedback, 2024, 49 : 47 - 53
  • [9] Decoding the Debate: A Comparative Study of Brain-Computer Interface and Neurofeedback
    Mahrooz, Mohammad H.
    Fattahzadeh, Farrokh
    Gharibzadeh, Shahriar
    APPLIED PSYCHOPHYSIOLOGY AND BIOFEEDBACK, 2024, 49 (01) : 47 - 53
  • [10] Decoding of intended saccade direction in an oculomotor brain-computer interface
    Jia, Nan
    Brincat, Scott L.
    Salazar-Gomez, Andres F.
    Panko, Mikhail
    Guenther, Frank H.
    Miller, Earl K.
    JOURNAL OF NEURAL ENGINEERING, 2017, 14 (04)