On a simple model of X0 (N)

被引:0
|
作者
Kodrnja, Iva [1 ]
机构
[1] Univ Zagreb, Fac Civil Engn, Kaciceva 26, Zagreb 10000, Croatia
来源
MONATSHEFTE FUR MATHEMATIK | 2018年 / 186卷 / 04期
关键词
Modular forms; Modular curves; Birational equivalence; Modular polynomial; MODULAR-CURVES; GENERATORS; EQUATIONS; SPACES; FORMS; MAPS; P-2;
D O I
10.1007/s00605-018-1161-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find plane models for all , . We observe a map from the modular curve to the projective plane constructed using modular forms of weight 12 for the group ; the Ramanujan function , and the third power of Eisestein series of weight 4, , and prove that this map is birational equivalence for every . The equation of the model is the minimal polynomial of over C(j).
引用
收藏
页码:653 / 661
页数:9
相关论文
共 50 条
  • [31] 感悟f′(x0)
    周小生
    [J]. 新课程(中), 2011, (02) : 101 - 101
  • [32] Intersection matrices for the minimal regular model of X0(N) and applications to the Arakelov canonical sheaf
    Dolce, Paolo
    Mercuri, Pietro
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (02):
  • [33] ETA, X0 RADIATIVE DECAYS IN A QUARK LOOP MODEL
    JULVE, J
    DEURRIES, FJ
    LEON, J
    [J]. ANALES DE FISICA, 1971, 67 (9-10): : 337 - &
  • [34] Search for a massive invisible particle X0 in B+ → e+X0 and B+ → μ+X0 decays
    Chanseok Park
    [J]. Physics of Atomic Nuclei, 2017, 80 : 983 - 986
  • [35] Automorphisms of hyperelliptic modular curves X0(N) in positive characteristic
    Kontogeorgis, Aristides
    Yang, Yifan
    [J]. LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 : 144 - 163
  • [36] AUTOMORPHISM-GROUPS OF THE MODULAR-CURVES X0(N)
    KENKU, MA
    MOMOSE, F
    [J]. COMPOSITIO MATHEMATICA, 1988, 65 (01) : 51 - 80
  • [37] Low-height points on modular curves X0(N)
    Michel, P
    Ullmo, E
    [J]. INVENTIONES MATHEMATICAE, 1998, 131 (03) : 645 - 674
  • [38] Search for a massive invisible particle X0 in B+ → e+X0 and B+ → μ+X0 decays
    Park, C-S.
    Kwon, Y-J.
    Adachi, I.
    Aihara, H.
    Asner, D. M.
    Aushev, T.
    Babu, V.
    Badhrees, I.
    Bakich, A. M.
    Barberio, E.
    Behera, P.
    Bhardwaj, V.
    Biswal, J.
    Bonvicini, G.
    Bozek, A.
    Bracko, M.
    Browder, T. E.
    Cervenkov, D.
    Chekelian, V.
    Chen, A.
    Cheon, B. G.
    Chilikin, K.
    Chistov, R.
    Cho, K.
    Chobanova, V.
    Choi, Y.
    Cinabro, D.
    Dalseno, J.
    Danilov, M.
    Dash, N.
    Dolezal, Z.
    Dutta, D.
    Eidelman, S.
    Farhat, H.
    Fast, J. E.
    Ferber, T.
    Fulsom, B. G.
    Gaur, V.
    Gabyshev, N.
    Garmash, A.
    Gillard, R.
    Goh, Y. M.
    Goldenzweig, P.
    Grzymkowska, O.
    Hara, T.
    Hayasaka, K.
    Hayashii, H.
    Heck, M.
    Hou, W-S.
    Iijima, T.
    [J]. PHYSICAL REVIEW D, 2016, 94 (01)
  • [39] Minimal resolution of Atkin-Lehner quotients of X0(N)
    Xue, Hui
    [J]. JOURNAL OF NUMBER THEORY, 2009, 129 (09) : 2072 - 2092
  • [40] Modular curves X0(N) with infinitely many quartic points
    Derickx, Maarten
    Orlic, Petar
    [J]. RESEARCH IN NUMBER THEORY, 2024, 10 (02)