Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Treatment of Bronchopulmonary Dysplasia

被引:12
|
作者
Xi, Yufeng [1 ]
Ju, Rong [1 ]
Wang, Yujia [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu Womens & Childrens Cent Hosp, Sch Med, Dept Neonatol, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Dermatol, State Key Lab Biotherapy, Chengdu, Peoples R China
来源
FRONTIERS IN PEDIATRICS | 2022年 / 10卷
关键词
extracellular vesicles; therapy; chronic respiratory disease; mesenchymal stem cell; bronchopulmonary dysplasia (BPD); CHRONIC LUNG-DISEASE; PROPHYLACTIC INDOMETHACIN; LONG-TERM; EXOSOMES; INJURY; VENTILATION; SURFACTANT; RISK;
D O I
10.3389/fped.2022.852034
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in premature infants. However, there is a lack of effective treatment. Mesenchymal stromal cells derived extracellular vesicles (MSC-EVs), as nano- and micron-sized heterogeneous vesicles secreted by MSCs, are the main medium for information exchange between MSCs and injured tissue and organ, playing an important role in repairing tissue and organ injury. EVs include exosomes, microvesicles and so on. They are rich with various proteins, nucleic acids, and lipids. Now, EVs are considered as a new way of cell-to-cell communication. EVs mainly induce regeneration and therapeutic effects in different tissues and organs through the biomolecules they carry. The surface membrane protein or loaded protein and nucleic acid molecules carried by EVs, can activate the signal transduction of target cells and regulate the biological behavior of target cells after binding and cell internalization. MSC-EVs can promote the development of pulmonary vessels and alveoli and reduce pulmonary hypertension (PH) and inflammation and play an important role in the repair of lung injury in BPD. The regeneration potential of MSC-EVs is mainly due to the regulation of cell proliferation, survival, migration, differentiation, angiogenesis, immunoregulation, anti-inflammatory, mitochondrial activity and oxidative stress. As a new type of cell-free therapy, MSC-EVs have non-immunogenic, and are small in size and go deep into most tissues. What's more, it has good biological stability and can be modified and loaded with drugs of interest. Obviously, MSC-EVs have a good application prospect in the treatment of lung injury and BPD. However, there are still many challenges to make MSC-EVs really enter clinical application.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma
    Agosti, Edoardo
    Antonietti, Sara
    Ius, Tamara
    Fontanella, Marco Maria
    Zeppieri, Marco
    Panciani, Pier Paolo
    BRAIN SCIENCES, 2024, 14 (11)
  • [22] Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges
    Fuloria, Shivkanya
    Subramaniyan, Vetriselvan
    Dahiya, Rajiv
    Dahiya, Sunita
    Sudhakar, Kalvatala
    Kumari, Usha
    Sathasivam, Kathiresan
    Meenakshi, Dhanalekshmi Unnikrishnan
    Wu, Yuan Seng
    Sekar, Mahendran
    Malviya, Rishabha
    Singh, Amit
    Fuloria, Neeraj Kumar
    BIOLOGY-BASEL, 2021, 10 (03): : 1 - 31
  • [23] ! The Therapeutic Potential of Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles
    Boerger, V.
    Goergens, A.
    Rohde, E.
    Giebel, B.
    TRANSFUSIONSMEDIZIN, 2015, 5 (03) : 131 - 137
  • [24] Mesenchymal Stem Cell-Derived Extracellular Vesicles for Bone Defect Repair
    Wang, Dongxue
    Cao, Hong
    Hua, Weizhong
    Gao, Lu
    Yuan, Yu
    Zhou, Xuchang
    Zeng, Zhipeng
    MEMBRANES, 2022, 12 (07)
  • [25] Reversal of Aplastic Anemia By Mesenchymal Stem Cell-Derived Extracellular Vesicles
    Wen, Sicheng
    Dooner, Mark S.
    Papa, Elaine
    Del Tatto, Michael
    Pereira, Mandy
    Cheng, Yan
    Goldberg, Laura R.
    Quesenberry, Peter J.
    BLOOD, 2017, 130
  • [26] Mesenchymal stem cell-derived extracellular vesicles, osteoimmunology and orthopedic diseases
    Ma, Maoxiao
    Cui, Guofeng
    Liu, Youwen
    Tang, Yanfeng
    Lu, Xiaoshuai
    Yue, Chen
    Zhang, Xue
    PEERJ, 2023, 11
  • [27] Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
    Kyong-Su Park
    Elga Bandeira
    Ganesh V. Shelke
    Cecilia Lässer
    Jan Lötvall
    Stem Cell Research & Therapy, 10
  • [28] Mesenchymal Stem Cell-Derived Extracellular Vesicles to the Rescue of Renal Injury
    Birtwistle, Lucy
    Chen, Xin-Ming
    Pollock, Carol
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (12)
  • [29] Mesenchymal Stem Cell-Derived Extracellular Vesicles for Regenerative Applications and Radiotherapy
    Wang, Ning
    Ma, Feifei
    Song, Huijuan
    He, Ningning
    Zhang, Huanteng
    Li, Jianguo
    Liu, Qiang
    Xu, Chang
    CELL TRANSPLANTATION, 2025, 34
  • [30] An Analysis of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Preclinical Use
    Tieu, Alvin
    Lalu, Manoj M.
    Slobodian, Mitchell
    Gnyra, Catherine
    Fergusson, Dean A.
    Montroy, Joshua
    Burger, Dylan
    Stewart, Duncan J.
    Allan, David S.
    ACS NANO, 2020, 14 (08) : 9728 - 9743