Integral column generation for the set partitioning problem

被引:9
|
作者
Tahir, Adil [1 ,2 ]
Desaulniers, Guy [1 ,2 ]
El Hallaoui, Issmail [1 ,2 ]
机构
[1] Polytech Montreal, GERAD, Montreal, PQ, Canada
[2] Polytech Montreal, Dept Math & Ind Engn, Montreal, PQ, Canada
关键词
Discrete optimization; Column generation; Integral simplex using decomposition; Crew scheduling; DECOMPOSITION; AGGREGATION; CONSTRAINT;
D O I
10.1007/s13676-019-00145-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The integral simplex using decomposition (ISUD) algorithm was recently developed to solve efficiently set partitioning problems containing a number of variables that can all be enumerated a priori. This primal algorithm generates a sequence of integer solutions with decreasing costs, leading to an optimal or near-optimal solution depending on the stopping criterion used. In this paper, we develop an integral column generation (ICG) heuristic that combines ISUD and column generation to solve set partitioning problems with a very large number of variables. Computational experiments on instances of the public transit vehicle and crew scheduling problem and of the airline crew pairing problem involving up to 2000 constraints show that ICG clearly outperforms two popular column generation heuristics (the restricted master heuristic and the diving heuristic). ICG can yield optimal or near-optimal solutions in less than 1 hour of computational time, generating up to 300 integer solutions during the solution process.
引用
收藏
页码:713 / 744
页数:32
相关论文
共 50 条
  • [11] Searching for optimal integer solutions to set partitioning problems using column generation
    Bredstrom, D.
    Jornsten, K.
    Ronnqvist, M.
    Bouchard, M.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2014, 21 (02) : 177 - 197
  • [12] A combinatorial column generation algorithm for the maximum stable set problem
    Bourjolly, JM
    Laporte, G
    Mercure, H
    OPERATIONS RESEARCH LETTERS, 1997, 20 (01) : 21 - 29
  • [13] ALGORITHM FOR SET PARTITIONING PROBLEM
    GONDRAN, M
    LAURIERE, JL
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1974, 8 (NV1): : 27 - 40
  • [14] TRANSFORMATION OF SET PARTITIONING PROBLEM INTO A MAXIMUM WEIGHTED STABLE SET PROBLEM
    BILLIONNET, A
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1978, 12 (03): : 319 - 323
  • [15] The set partitioning problem in a quantum context
    Cacao, Rafael
    Cortez, Lucas R. C. T.
    Forner, Jackson
    Validi, Hamidreza
    de Farias, Ismael R.
    Hicks, Illya V.
    OPTIMIZATION LETTERS, 2024, 18 (01) : 1 - 17
  • [16] The set partitioning problem in a quantum context
    Rafael Cacao
    Lucas R. C. T. Cortez
    Jackson Forner
    Hamidreza Validi
    Ismael R. de Farias
    Illya V. Hicks
    Optimization Letters, 2024, 18 : 1 - 17
  • [17] Genetic algorithm for the set partitioning problem
    Levine, David M.
    Australian Electronics Engineering, 1994, 27 (02):
  • [18] ALGORITHM FOR COMPLETE SET PARTITIONING PROBLEM
    SALKIN, HM
    LIN, CH
    OPERATIONS RESEARCH, 1975, 23 : B389 - B389
  • [19] FREQUENCY PLANNING AS A SET PARTITIONING PROBLEM
    THUVE, H
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1981, 6 (01) : 29 - 37
  • [20] Transformation of the Set Partitioning Problem Into a Maximum Weighted Stable Set Problem.
    Billionnet, Alain
    RAIRO Recherche Operationnelle, 1978, (03): : 319 - 323