Network-guided search for genetic heterogeneity between gene pairs

被引:6
|
作者
Gumpinger, Anja C. [1 ,2 ]
Rieck, Bastian [1 ,2 ]
Grimm, Dominik G. [3 ,4 ]
Borgwardt, Karsten [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland
[2] SIB Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
[3] Tech Univ Munich, Bioinformat, TUM Campus Straubing Biotechnol & Sustainabil, D-94315 Straubing, Germany
[4] Weihenstephan Triesdorf Univ Appl Sci, Bioinformat, D-94315 Straubing, Germany
关键词
ARABIDOPSIS-THALIANA; MISSING HERITABILITY; RARE VARIANTS; ASSOCIATION; IDENTIFICATION; DISEASES; MAP;
D O I
10.1093/bioinformatics/btaa581
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Correlating genetic loci with a disease phenotype is a common approach to improve our understanding of the genetics underlying complex diseases. Standard analyses mostly ignore two aspects, namely genetic heterogeneity and interactions between loci. Genetic heterogeneity, the phenomenon that genetic variants at different loci lead to the same phenotype, promises to increase statistical power by aggregating low-signal variants. Incorporating interactions between loci results in a computational and statistical bottleneck due to the vast amount of candidate interactions. Results: We propose a novel method SiNIMin that addresses these two aspects by finding pairs of interacting genes that are, upon combination, associated with a phenotype of interest under a model of genetic heterogeneity. We guide the interaction search using biological prior knowledge in the form of protein-protein interaction networks. Our method controls type I error and outperforms state-of-the-art methods with respect to statistical power. Additionally, we find novel associations for multiple Arabidopsis thaliana phenotypes, and, with an adapted variant of SiNIMin, for a study of rare variants in migraine patients.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 50 条
  • [41] Understanding the Influence of Receptive Field and Network Complexity in Neural Network-Guided TEM Image Analysis
    Sytwu, Katherine
    Groschner, Catherine
    Scott, Mary C.
    MICROSCOPY AND MICROANALYSIS, 2022, 28 (06) : 1896 - 1904
  • [42] Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer
    He, Liye
    Bulanova, Daria
    Oikkonen, Jaana
    Hakkinen, Antti
    Zhang, Kaiyang
    Zheng, Shuyu
    Wang, Wenyu
    Erkan, Erdogan Pekcan
    Carpen, Olli
    Joutsiniemi, Titta
    Hietanen, Sakari
    Hynninen, Johanna
    Huhtinen, Kaisa
    Hautaniemi, Sampsa
    Vaharautio, Anna
    Tang, Jing
    Wennerberg, Krister
    Aittokallio, Tero
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [43] Network-guided genomic and metagenomic analysis of the faecal microbiota of the critically endangered kakapo
    Waite, David W.
    Dsouza, Melissa
    Sekiguchi, Yuji
    Hugenholtz, Philip
    Taylor, Michael W.
    SCIENTIFIC REPORTS, 2018, 8
  • [44] metPropagate: network-guided propagation of metabolomic information for prioritization of metabolic disease genes
    Emma J. Graham Linck
    Phillip A. Richmond
    Maja Tarailo-Graovac
    Udo Engelke
    Leo A. J. Kluijtmans
    Karlien L. M. Coene
    Ron A. Wevers
    Wyeth Wasserman
    Clara D. M. van Karnebeek
    Sara Mostafavi
    npj Genomic Medicine, 5
  • [45] Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids
    Angelovici, Ruthie
    Batushansky, Albert
    Deason, Nicholas
    Gonzalez-Jorge, Sabrina
    Gore, Michael A.
    Fait, Aaron
    DellaPenna, Dean
    PLANT PHYSIOLOGY, 2017, 173 (01) : 872 - 886
  • [46] metPropagate: network-guided propagation of metabolomic information for prioritization of metabolic disease genes
    Graham Linck, Emma J.
    Richmond, Phillip A.
    Tarailo-Graovac, Maja
    Engelke, Udo
    Kluijtmans, Leo A. J.
    Coene, Karlien L. M.
    Wevers, Ron A.
    Wasserman, Wyeth
    van Karnebeek, Clara D. M.
    Mostafavi, Sara
    NPJ GENOMIC MEDICINE, 2020, 5 (01)
  • [47] Efficient network-guided multi-locus association mapping with graph cuts
    Azencott, Chloe-Agathe
    Grimm, Dominik
    Sugiyama, Mahito
    Kawahara, Yoshinobu
    Borgwardt, Karsten M.
    BIOINFORMATICS, 2013, 29 (13) : 171 - 179
  • [48] RNA-protein interaction prediction using network-guided deep learning
    Liu, Haoquan
    Jian, Yiren
    Zeng, Chen
    Zhao, Yunjie
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [49] Road Network-Guided Fine-Grained Urban Traffic Flow Inference
    Liu, Lingbo
    Liu, Mengmeng
    Li, Guanbin
    Wu, Ziyi
    Lin, Junfan
    Lin, Liang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1119 - 1132
  • [50] Classification Network-Guided Weighted K-Means Clustering for Multitouch Detection
    Lee, James
    Yun, Jun-Ha
    Shim, Jae-Hun
    Kang, Suk-Ju
    IEEE SENSORS JOURNAL, 2023, 23 (18) : 21397 - 21407