Prediction of lymph node metastasis by analysis of gene expression profiles in non-small cell lung cancer

被引:24
|
作者
Takada, M
Tada, M
Tamoto, E
Kawakami, A
Murakawa, K
Shindoh, G
Teramoto, K
Matsunaga, A
Komuro, K
Kanai, M
Fujiwara, Y
Shirata, K
Nishimura, N
Miyamoto, M
Okushiba, S
Kondo, S
Hamada, J
Katoh, H
Yoshiki, T
Moriuchi, T
机构
[1] Hokkaido Univ, Inst Med Genet, Grad Sch Med, Div Canc Related Genes,Kita Ku, Sapporo, Hokkaido 0600815, Japan
[2] Hokkaido Univ, Grad Sch Med, Dept Surg Oncol, Div Canc Diagnost & Therapeut, Sapporo, Hokkaido 0600815, Japan
[3] Hokkaido Univ, Grad Sch Med, Dept Pathol Pathophysiol, Div Pathophysiol Sci, Sapporo, Hokkaido 0600815, Japan
[4] GeneticLab Co Ltd, Kita Ku, Sapporo, Hokkaido 0010013, Japan
关键词
cDNA array; non-small cell lung carcinoma; gene expression profiling; lymph node metastasis; feature subset selection;
D O I
10.1016/j.jss.2004.06.002
中图分类号
R61 [外科手术学];
学科分类号
摘要
Objective. Non-small cell lung carcinoma (NSCLC) is one of the leading causes of death in the world. Lymph node metastasis is not only an important factor in estimating the extent and the metastatic potential of an NSCLC but also in prognosticating the patient outcome. Preoperative prediction of lymph node metastasis might greatly facilitate the choice of appropriate surgical and medical options in patients with NSCLC. Methods and results. Using a cDNA array, we analyzed the expression profiles of 1,289 genes in 92 cancer tissues of NSCLC (37 squamous cell carcinomas and 55 adenocarcinomas). We divided the patients into two groups (classes) for each of various pathological factors, such as lymph node metastasis and pT-stage. For each pair of classes, we searched for an optimal combination of genes to classify the cases using a sequential forward selection algorithm starting from a gene set that showed significant difference in expression between the classes. We used the leave-one-out error cross-validation on a k-nearest neighbor classifier to sequentially choose the gene. Using the optimized set of genes, it was possible to stratify the patients for lymph node metastasis (pN-stage) and pT-stage at, respectively, 100% (23 genes) and 100% (55 genes) for cases with squamous cell carcinomas and 94% (43 genes) and 92% (35 genes) for those with adenocarcinomas. Conclusion. We conclude that expression profiling using feature selection provides a powerful means of stratification (personalization) of NSCLC patients and choice in treatment options, particularly for factors such as lymph node metastasis whose radiological diagnosis is presently incomplete. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 50 条
  • [11] Predictors and Patterns of Lymph Node Metastasis in Small Peripheral Non-Small Cell Lung Cancer
    Lin, Jun-Tao
    Yang, Xue-Ning
    Yan, Li-Xu
    Wang, Si-Yun
    Zhong, Wen-Zhao
    Nie, Qiang
    Liao, Ri-Qiang
    Dong, Song
    Jiang, Ben Yuan
    Wu, Yi Long
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (01) : S659 - S660
  • [12] Prediction of lymph node metastasis using the combined criteria of helical CT and mRNA expression profiling for non-small cell lung cancer
    Chang, Jee Won
    Yi, Chin A.
    Son, Dae-Soon
    Choi, Naeyun
    Lee, Jinseon
    Kim, Hong Kwan
    Choi, Yong Soo
    Lee, Kyung Soo
    Kim, Jhingook
    [J]. LUNG CANCER, 2008, 60 (02) : 264 - 270
  • [13] Gene Expression Profiles of Non-Small Cell Lung Cancer: Survival Prediction and New Biomarkers
    Vaelk, Kristjan
    Vooder, Tonu
    Kolde, Raivo
    Reintam, Mari-Ann
    Petzold, Cathleen
    Vilo, Jaak
    Metspalu, Andres
    [J]. ONCOLOGY, 2010, 79 (3-4) : 283 - 292
  • [14] Expression profiles of non-small cell lung cancers on cDNA microarrays: Identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs
    Kikuchi, T
    Daigo, Y
    Katagiri, T
    Tsunoda, T
    Okada, K
    Kakiuchi, S
    Zembutsu, H
    Furukawa, Y
    Kawamura, M
    Kobayashi, K
    Imai, K
    Nakamura, Y
    [J]. ONCOGENE, 2003, 22 (14) : 2192 - 2205
  • [15] Expression profiles of non-small cell lung cancers on cDNA microarrays: Identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs
    Takefumi Kikuchi
    Yataro Daigo
    Toyomasa Katagiri
    Tatsuhiko Tsunoda
    Koichi Okada
    Soji Kakiuchi
    Hitoshi Zembutsu
    Yoichi Furukawa
    Masafumi Kawamura
    Koichi Kobayashi
    Kohzoh Imai
    Yusuke Nakamura
    [J]. Oncogene, 2003, 22 : 2192 - 2205
  • [16] Lymph node micrometastasis in non-small cell lung cancer
    Sun, Jiajing
    Wu, Sikai
    Jin, Zixian
    Ren, Sijia
    Cho, William C.
    Zhu, Chengchu
    Shen, Jianfei
    [J]. BIOMEDICINE & PHARMACOTHERAPY, 2022, 149
  • [17] Radiomics Based Lymph Node Metastasis Prediction in Non-small-cell Lung Cancer
    Wang C.
    Liu X.
    Dong D.
    Zang L.-Y.
    Liu Z.-Y.
    Liang C.-H.
    Tian J.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (06): : 1087 - 1093
  • [18] Postoperative Prognostic Factors in Non-Small Cell Lung Cancer Patients with Lymph Node Metastasis
    Goto, T.
    Nakamura, A.
    Kitahara, A.
    Sato, S.
    Koike, T.
    Tsuchida, M.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (11) : S2343 - S2344
  • [19] Surgical therapeutic strategy for non-small cell lung cancer with mediastinal lymph node metastasis
    Ma Qian Li
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2009, 4 (09) : S570 - S570
  • [20] Dysregulation of microRNAs may lead to lymph node metastasis of non-small cell lung cancer
    Pastorkova, Z.
    Karda, J. S.
    Kolac, Z.
    [J]. VIRCHOWS ARCHIV, 2016, 469 : S200 - S200