CRITERION FOR THE SOBOLEV WELL-POSEDNESS OF THE DIRICHLET PROBLEM FOR THE POISSON EQUATION IN LIPSCHITZ DOMAINS. I.

被引:1
|
作者
Parfenov, A., I [1 ]
机构
[1] Sobolev Inst Math, 4 Koptyuga Ave, Novosibirsk 630090, Russia
关键词
Alkhutov criterion; Bogdan formula for the Green function; Carleman-Huber theorem; Dirichlet problem for the Poisson equation; LHMD property; Lipschitz domain; Nystroom condition; Shen criterion; BOUNDARY HARNACK PRINCIPLE; ELLIPTIC-EQUATIONS; GREEN POTENTIALS; MARTIN BOUNDARY; INTEGRABILITY; MATRICES; SYSTEMS; MONOTONICITY; INEQUALITIES; COEFFICIENTS;
D O I
10.33048/semi.2020.17.144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Dirichlet problem for the Poisson equation in bounded Lipschitz domains. We show that its well-posedness in the first order Sobolev space is equivalent to the condition of K. Nystrom (1996). This criterion is simpler than the similar criterion of Z. Shen (2005) due to using one positive harmonic function with vanishing trace instead of gradients of all harmonic functions with vanishing trace. Our criterion yields the main known facts about this well-posedness except for Shen's criterion. Finally, we determine all possible combinations of three basic properties (injectivity, denseness of range and closedness of range) of the operator of the boundary value problem under consideration.
引用
收藏
页码:2142 / 2189
页数:48
相关论文
共 50 条
  • [31] Global well-posedness for the KP-I equation
    L. Molinet
    J.C. Saut
    N. Tzvetkov
    Mathematische Annalen, 2002, 324 : 255 - 275
  • [32] The Dirichlet problem for the Porous Medium Equation in bounded domains. Asymptotic behavior
    Vazquez, JL
    MONATSHEFTE FUR MATHEMATIK, 2004, 142 (1-2): : 81 - 111
  • [33] Well-posedness of the second-order linear singular Dirichlet problem
    Lomtatidze, Alexander
    Oplustil, Zdenek
    GEORGIAN MATHEMATICAL JOURNAL, 2015, 22 (03) : 409 - 419
  • [34] Well-posedness of the Dirichlet problem in non-elliptic isotropic elasticity
    Ernst, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (01): : 73 - 89
  • [35] The Dirichlet problem for the porous medium equation in bounded domains. Asymptotic behavior
    Vazquez, JL
    NONLINEAR DIFFERENTIAL EQUATION MODELS, 2004, : 81 - 111
  • [36] Global well-posedness for the KP-I equation
    Molinet, L
    Saut, JC
    Tzvetkov, N
    MATHEMATISCHE ANNALEN, 2002, 324 (02) : 255 - 275
  • [37] The Dirichlet Problem for the Porous Medium Equation in Bounded Domains. Asymptotic Behavior
    Juan Luis Vazquez
    Monatshefte für Mathematik, 2004, 142 : 81 - 111
  • [38] GLOBAL WELL-POSEDNESS OF VLASOV-POISSON-TYPE SYSTEMS IN BOUNDED DOMAINS
    Cesbron, Ludovic
    Iacobelli, Mikaela
    ANALYSIS & PDE, 2023, 16 (10): : 2465 - 2494
  • [39] Long Time Well-Posedness of the MHD Boundary Layer Equation in Sobolev Space
    Chen, Dongxiang
    Ren, Siqi
    Wang, Yuxi
    Zhang, Zhifei
    ANALYSIS IN THEORY AND APPLICATIONS, 2020, 36 (01) : 1 - 18
  • [40] Long Time Well-Posedness of the MHD Boundary Layer Equation in Sobolev Space
    Dongxiang Chen
    Siqi Ren
    Yuxi Wang
    Zhifei Zhang
    AnalysisinTheoryandApplications, 2020, 36 (01) : 1 - 18